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ABSTRACT 

 
In the oil and gas industry, the onset of increased sand production due to aging fields 

has repercussions in the processing facilities. The erosive and corrosive nature of sand 

when present in the production fluids can cause detrimental damage to the facility. The 

early detection of presence of sand provides a useful tool so that oil and gas productions 

may be optimised, and unnecessary deferments averted, or in the worst case, the 

ultimate loss of revenue. However, field data on sand measurements is normally limited 

due to the unavailability of instrumentation, or if instrumented, there are insufficient 

samples in the measured process variables such as production flow, pressure of the 

flowline and sand production rates. The erosion of oil and gas wells poses a challenging 

task and can be surmounted by deploying a neural network in identifying the 

uncertainties in the system dynamics. Pre-processing of these limited process variables 

becomes an important and imperative part before the data is presented for the training 

of neural networks. Concerted efforts spent on data analysis have reaped benefits 

whereby models generated could accurately predict the imminent threat of sand 

production. A novel approach is undertaken in data pre-processing using the optimized 

Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) 

methodology has been implemented. The eigenvectors were selected to represent the 

parameters so that an almost universal validation data subset could be used in the 

pruning of the neural network. The coefficients of the PCR and PLSR respectively were 

automatically uploaded under different training scenarios through an expert system. The 

model was validated using residual analysis and the independence test of the cross-

correlation between the inputs and the dependent variable. As a result, training of the 

neural network was more reliable with the PCR/PLSR validation dataset. Moreover, the 

performance index achieved on an independent test dataset was also invariably improved 

compared to that of the full dataset. The acceptable level of confidence attained in the 

approach adopted ensures that sand production could be detected in advance to avoid 

damage to oil and gas facilities. The reliable prediction of the onset of sand production 

ensures continuous production from the oil and gas facilities. More importantly, revenues 

from oil and gas production, and the safety of the workers in carrying out their tasks are 

assured.  
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CHAPTER 1 

 
INTRODUCTION 

                                                                                                                                                                                                                                                  

1.1  Overview 

1.1.1  Emerging Challenges  

The global oil landscape continues to be promising and while there are two 

schools of thoughts on the depletion of the global oil reserves, amongst 

the technological community and those that presupposes that there is 

plentiful oil (Gorelick, 2010). The latter believes that oil production is only 

limited to the type of technology employed and the price of the commodity. 

Nevertheless, the demand for oil will continue to increase in the near 

future. Environmental legislations will continue to press for cleaner fuel, 

and there will be an increasing demand for gas. 

 With research funding cutbacks, the oil and gas industry will continue 

to see a widening gap between academia and industry. The key to the 

growth in the oil and gas reserves are technology and collaboration. If the 

frontiers of engineering are going to be pushed further, then new insights 

are required from the talented pool that have graduated from academia 

each year to link theoretical knowledge and industrial practitioners. The 

dire need for continuous improvement to meet the more difficult tasks of 

extracting oil and gas from fields is a reality. 

 It is expected that as oil and gas fields that produce hydrocarbons 

begin to age and approach at some stage in their lifetime, sand production 

becomes eminent. The onset of sand production becomes a threat to a 

producing oil or gas well and with obvious financial implications. The 

financial implications are due mainly to the intentional reduction in the 

production rates in order to reduce the resulting velocity of solids in the 
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fluid flow, which may consist of oil, gas and water in its respective 

composition. Fluid flow containing solids (sand) with high velocity would 

undeniably bring about the erosive and corrosive consequences to the 

facility. To complicate matters, the gas volume fraction (GVF) also plays a 

dominant role as to the transportation of solids in multiphase flow. 

1.1.2 The Need for Continuous Production 

The oil and gas industry with their aging fields has problems associated 

with sand production. Sand production is the phenomena where sand is 

produced simultaneously in the entrained fluids with oil and gas production.  

 In order for oil and gas to produce economically, well planning and 

economics play an important role. In terms of the drilling activities, a 

borehole is drilled normally into the ground into the rock strata that has 

enough porosity to allow the flow of hydrocarbons from the rock the 

reservoir below. Casing and tubing are installed with other completion 

equipment to direct the flow from one or more zones up through the 

completed well to the wellhead on the surface. In the well design phase, 

well engineers need to predict if solids in the form of sand particles will be 

expected. Core analysis needs to be carried to estimate the size of the sand 

particulates, so that suitable screens or filters can be installed in the 

completion formation. In the oil and gas industry, these screens are in the 

form of gravel packing and the size of the screen of “downhole” strainer 

depends on the anticipated sand size. 

 Fine sand particles, commonly referred as fines, are usually each 

about 25-100 µm in diameter. The screens of the gravel packing will need 

to be sized such that the fines can be adequately filtered. The sand 

particulates should remain in the reservoir and prevented from flowing up 

the well bore and up the surface. This is to ensure that the surface 

equipment will not be damaged due to the abrasive nature of the flowing 

sand particles. With gravel packing in installed downhole in the well, a flow 
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restriction is naturally introduced in the flowpath and therefore, the 

operating flow rates will always be lower than the design flowrates based 

on the wells bottom-hole pressure (BHP). 

 The onset of sand production could be due to the breaking down of 

the formation that will invariably lead to flow instability and formation 

damage. In such instances, the well sands-up and completely restricts any 

further flow from the well. It may not be economically viable to deploy a 

workover crew to “sand-out” the well, especially if it was an offshore 

platform, where the logistics and cost may outweigh the benefits of getting 

the well to start flowing again. On the other hand, it could be failure on 

the gravel packing screens, in which case the well needs to be immediately 

shut-in in view of the impending damage it can cause to the surface process 

and wellhead equipment. However, during the normal start-up of a well 

which has recently been drilled and have been closed for an extended 

period, solids are expected as debris comprising of drilling mud, perforation 

debris, gravel pack sand, scales, corrosion products, etc. Over time, it 

would eventually stabilise, and it is important that during this period, the 

production be at reduced flowrates. 

 Well gravel packing is a conventional oil field technique for screening 

or filtering formation sand and sediments from entering the well bore with 

the produced fluids. This is to avert production deferment because of fine 

sand, sometimes referred to as fines, blocking the continuous production 

of the hydrocarbon fluids. Gravel packing as shown in Figure 1-1 refers to 

the petroleum industry practice of surrounding with gravel or coarse sand, 

the perforated liner through the producing formation in an oil or gas well. 

When properly placed in the annular space between the wall of the well 

and the perforated liner, gravel supports the walls, prevents caving of loose 

material as shown in against the liner and serves to restrain sand from 

unconsolidated and disintegrating strata so that it may not enter the well. 
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Effective screening of sand diminishes the destructive influence of sand 

scouring on well equipment and tends to reduce maintenance costs. 

 

Figure 1-1: Gravel Packing to safeguard sand production in a well 

 Sand production will pose a couple of challenges to the oil and gas 

industry where there is already tough legislations in place to ensure that 

the industry continue to operate safely in the production of oil and gas. 

Moreover, the erosional problems associated with sand production manifest 

itself in bend ruptures as shown in Figure 1-2 should be managed in a 

systematic manner to prevent the release of hydrocarbon. 

 

 

Figure 1-2: Erosive-corrosive effects on elbowsof flowlines 
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 In the current mode of production of an oil well, the sand erosion rate 

is monitored and the opening of the production choke valve is adjusted as 

depicted in Figure 1-3. The production choke valve is sized for optimum 

performance and operates between an opening of 30% and 80%. If the 

erosion rate is acceptable, and the choke opening exceeds 80%, then it 

indicates the wellbore is plugged with formation sand as the oil can be 

produced at its optimum rate. Workover maintenance on the well is 

required to stimulate the flow in order to achieve its optimum production. 

On the other hand, if the erosion is not acceptable, and the choke opening 

is under 30%, then it indicates that formation sand has reached the surface 

of the wellbore and could cause erosional damage on the surface piping 

and equipment. 

 In both the scenarios above, the intervention by the production 

operator is of a reactive nature. Moreover, by the time the response is 

initiated erosional damage may have occurred and well needs to be shut-

in for workover maintenance. 

 

 



 

6 

 

 

Figure 1-3: Formation Sand as root causes of oil production interruption 

1.2 Problem Statement and its Significance 

The problem with the current operations of oil wells is the way that the 

production operator responds to the onset of sand production in an oil well 

that occurs because of the decreasing forces in the reservoir causing 

formation sand to enter the wellbore as shown in Figure 1-4. In the event 

that formation sand accumulates at the entry to the well bore, then the 

well bore will begin to be plugged and production will be reduced. The 

operator will respond reactively by increasing the opening of the production 
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choke valve. However, depending on how quickly the wellbore is plugged, 

the oil can no longer flow out of the well bore, and production will 

eventually stop with economic implications resulting in production 

deferment.  

 

Figure 1-4: Reactive Response to the Sand Erosion Monitoring 

On the other hand, in the event that formation sand does not accumulate 

at the entry to the well bore but reaches the surface of the well bore, the 
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choke valve. However, by then sand erosion could have caused detrimental 

damage to the surface piping and equipment with economic implications. 

Moreover, if there is a sudden onset of formation sand, pinhole leaks could 

develop at piping bends, resulting in a loss of containment of hydrocarbon 

in the flowlines. If there is a source of ignition present in such a hazardous 

area, this could result in an explosion and potential injury to personnel. 

1.2.1 Erosion Problems 

Sand production is one of the major problems faced in the oil and gas 

industry and is common to clastic or fragmented sedimentary basins 

throughout the world, affecting thousands of oil and gas fields. Erosion 

damage in oil and gas wells are problematic at high velocities due to the 

production of solid particles. In order to avoid damage, wells are made to 

flow at lower production traditionally based on guidelines governed by the 

American Petroleum Institute recommendations under API 14E. The 

downside of this approach is that there is a huge impact on the revenue 

actually generated as the fear of erosion damage dictates the high 

productivity of oil and gas wells. Sand production gives rise to entrained 

solids in the production fluids comprising of hydrocarbons particularly in 

high-capacity oil and gas production causing erosion damage and the 

importance of preventing damage to the subsurface location is given due 

consideration (Venkatesh, 1986). 

 One of the typical encountered problems in the production of 

formation sand is the sudden change of flowrate or high flowrate (Morita 

and Boyd, 1991). It emphasized the importance of a good completion of 

the reservoir formation during the drilling stage. An understanding of rock 

mechanics is also important so that the strategies to address the sand 

production problems could be adequately addressed. 

 In depleting oil and gas wells, sand production becomes an issue as 

the erosive-corrosive effects cause detrimental damage to pipelines, 
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flowlines, control valves, elbows and other fittings along the flowpath 

(Svedeman, 1994). There is a dire need to review the recommendations 

made in the API 14E on the erosional velocity criteria for the design of 

multiphase pipelines in these erosive-corrosive services. This is to ensure 

that flowrates in the presence of sand is not overly conservative, and 

further experiments were conducted for corrosive two-phase flow 

(Tronvoll, Dusseault, Sanfilippo, and Santarelli, 2000). 

 The ability to predict the onset of sand production proves to be an 

invaluable foresight as production flowrates of the problematic oil or gas 

well could be reduced in a timely manner. This will prevent sand particles 

travelling at such high velocities that could cause a loss of containment of 

the hydrocarbon, and consequently the potential for loss of life (DNV, 

2010). In this way, working personnel can be forewarned and prevented 

from being exposed the released hydrocarbon in the vicinity. 

1.2.2 Understanding the Hazards 

The core activities of the oil and gas business is to explore and produce 

hydrocarbons in the most economical way, based on technical sound design 

and principles, while maintaining and safeguarding the safety of its 

personnel and the facilities or Assets. Asset integrity and operational 

excellence are corporate values and should be exercised at all levels of the 

business. In production optimisation initiatives, the wells are pushed to 

their limits in terms of the production flowrates. However, the operating 

flowrates must not exceed the designed flow rates such that formation 

sand is co-produced together with the hydrocarbon fluids. More specifically, 

the erosional velocities of the sand must not exceed the maximum 

allowable sand rate. These values are based on empirical experiments and 

recommended under API 14E of the American Petroleum Institute. The 

erosion limits stipulated under the recommended practice by API are 

conservative and the limits are being reviewed in recent years. This is 
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because there needs to be a trade-off between “producing to the well’s 

capabilities” and the same time “producing within the erosional limits” so 

as not to incur damage to the process equipment. 

 When wells are produced at higher flowrates, the risk of erosion on 

the inner walls of the process piping is higher, and if it goes unnoticed, 

poses a hazard to process equipment and pipings. In the worst-case 

scenarios, gradual persistent erosion-corrosion effects will result in pinhole 

leaks in these flowpath components. For gas wells, where the hydrocarbon 

fluids are lighter, a gas cloud will form. If there is a source of ignition, and 

hence, completing the “fire-triangle” an explosion will occur. In the 

likelihood that there is presence of personnel in the vicinity, the outcome 

of the incident or event could result in potential loss of lives. 

 In conducting a HSSE study on fire protection analysis (FirePran), 

such facilities would require that the facility be installed with a fire, gas 

and smoke detection system approved to IEC 61508 requirements. The 

detectors would serve as mitigative or reactive hardware barriers, as they 

would be activated after the event has taken place. Likewise, preventive 

hardware barriers are required to prevent the event from happening. Like 

their mitigative counterparts, preventive barriers would also include other 

barriers in the form of procedures, amongst others, which are human-error 

prone. Hardware barriers in the form of instrumentation and other 

mechanical equipment would have to play their roles in ensuring the safety 

of, primarily, its personnel and then its assets. 

1.2.3 Ensuring Continuous Production 

From an economic and production standpoint, the demand for continuous 

operations of oil and gas production is expected. An optimum solution 

substantiated with a comprehensive economic evaluation model has been 

proposed for an effective sand management system (Benjing et al., 2008). 

With continuous operations, the integrity of oil and gas wells must be 
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ensured so that personnel safety is always of utmost importance in any 

esteemed organization. One of the problems underpinning the industry 

such as those with aging oil and gas fields is the onset of sand production 

together with the entrained fluid. This is a well-recognized issue facing the 

oil and gas industry and various countermeasures have been applied to 

overcome the impending problem. 

 With the advancement in the process control systems adopting the 

latest standards information technology, the industry today can monitor 

almost any measurements of any parameter or variable of interest 

(Abdelgawad and Bayoumi, 2011). With the colossal amount of data readily 

available if required, data-driven models take precedence and is the 

preferred choice as compared to mathematical modelling. 

 The application of neural networks in the areas of predicting diverse 

uncertainties is also an active area of research and has been in the 

petroleum industry (Ali, 1994; MY Kanj and Roegiers, 1998). Potential 

areas include, but not limited to, seismic pattern recognition, improvement 

of gas well production, prediction and optimisation of well performance 

amongst others. The uptake of the technology is gradually increasing in 

persuading decision makers on the ability of neural networks in solving 

problems in the petroleum industry. The deployment of neural networks in 

applications remains a challenge and it is anticipated with the passage of 

time, there will be a general acceptance of the technology. 

 In a multi-well field development, the success of a new well is 

determined by its physical location in the reservoir. The placement 

combinations for several wells can be carried out with a numeric reservoir 

simulator. Evaluation by a standard reservoir simulator is prohibitively time 

consuming and expensive, and the use of a fully-trained neural network 

has been successfully deployed as a fast prediction tool for optimising the 

new wells in the reservoir in the oil and gas industry  with significant 
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reduction in efforts in computational processing (Centilmen, Ertekin, and 

Grader, 1999). 

   Models for predicting the onset of sanding co-production are used to 

forecast the production condition, e.g., pressure drawdown or flow rate, at 

which sand production occurs. The numerical and analytical sanding onset 

prediction models would need one or another rock mechanics input 

parameter or would demand extensive computations that employs Finite 

Element models. 

  A different approach requiring readily available rock mechanics data 

is not practical in cases when quick sand control decision is needed. In 

using these sanding onset prediction models it was reported that the 

sanding problems studied reached good agreement between predicted and 

field measured critical drawdown pressure (Lamorde, Somerville, and 

Hamilton, 2014; Yi, Valkó, and Russell, 2005). 

 Besides, in dealing with engineering problems that invariably affect 

an organization’s productivity, profit and license to operate, any form of 

modelling should be efficient and could be rapidly deployed (Massie, 

Nygaard, and Morita, 1987). 

1.3 Research Philosophy 

The philosophy is that if the onset of the production of formation sand from 

the reservoir can be predicted, detrimental damage to surface piping and 

equipment can be avoided a result of sand erosion as shown in Figure 1-5. 

Moreover, injury to personnel can be mitigated and significant damage to 

facilities can be averted because of explosion and fire. 
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Figure 1-5: Predicting onset of the production of formation sand 

1.4 Research Objectives 

The motivation for this research work is to address the shortcomings of 

sand prediction models in the industry due to the high uncertainty of the 

nature of the reservoirs where oil or/and gas are usually found. The use of 

neural networks in prediction of systems with uncertainty is an established 
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methodology and the application of the methodology is a novel approach 

(Diebold, et al., 2005).  

 The objective of the thesis is to develop a sand production prediction 

model with a 95% confidence-level based-on available instrumentation 

installed on a typical oil and gas well by building a data-driven model based 

on a principal dataset by adopting a suitable and systematic approach. 

1.5 Research Methodology 

Datasets from historical records of episodes of sand erosion as a result of 

the onset of the production of formation sand were extracted. 

Subsequently, the corresponding datasets from historical records of surface 

process measurement covering the same period were extracted when sand 

erosion occurred. From both these datasets, there was a need to establish 

if a correlation exists between sand erosion and surface process 

measurements. 

 It is imperative to predict the onset of formation sand before it 

accumulates at the entry of the wellbore that could cause production 

deferment as a result of plugging. Eventually, the goal is to predict the 

onset of formation sand before it reaches the surface of the wellbore that 

could cause detrimental damage to surface piping and equipment as a 

result of sand erosion. 

 The research methodology adopted is that of an inductive and 

quantitative approach. The historical dataset for wells was obtained from 

the literature. The following steps were taken as shown in Table 1-1 to 

realise an artificial neural network-based sand prediction technique. 
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Table 1-1: Methodology in Realising a Sand Prediction System 

Steps Description of Steps 

1 Scale the datasets so that they have a mean of zero 
and a variance of unity. 

2 Assign sand dataset as dependent variable i.e., the 
output 

3 Assign process measurement datasets as the 

independent variable i.e., the inputs 

4 Design a Multiple-Input-Single-Output Neural 
Network with multiple inputs and one output. 

5 Optimise the network for the number of neurons in 
hidden layer to obtain the desired performance. 
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The flowchart may be depicted as in Figure 1-6. 

 

Figure 1-6: Flow Chart of the Methodology 

 

ID
E

N
T

IF
Y

A
S

S
E

S
S

Id
e

n
ti
fi
e

d

T
a

b
u

la
te

 f
in

d
in

g
s
 

a
n

d
 a

s
s
e

s
s
 g

a
p

s
 

in
 l
it
e

ra
tu

re

S
E

L
E

C
T

D
E

F
IN

E

Id
e

n
ti
fy

 D
a

ta
 

o
f 
in

te
re

s
t

D
e

fi
n

e
 M

o
d

e
l

A
d

e
q

u
a

te

Id
e

n
ti
fy

 E
q

u
ip

m
e

n
t 

a
n

d
 M

a
te

ri
a

ls
B

u
ild

 M
o

d
e

ls

E
v
a

lu
a

te
 a

n
d

 

V
a

lid
a

te

A
s
s
e

s
s
 a

n
d

 

c
o

n
d

u
c
t 
re

v
ie

w

S
ta

te
 t
h

e
 

H
y
p

o
th

e
s
is

M
o

d
e

l 
T

e
s
ti
n

g

D
e

v
e

lo
p

 P
ro

p
o

s
e

d
  

A
lg

o
ri
th

m

E
X

E
C

U
T

E

G
a

p
s

M
e

a
s
u

ra
b

le

D
a

ta
 P

ro
c
e

s
s
in

g

D
e

fi
n

e
 A

lg
o

ri
th

m

L
it
e

ra
tu

re
 S

u
rv

e
y

S
e

le
c
t 
th

e
 g

a
p

 t
o

 

fo
c
u

s
 i
n

C
o

lle
c
t 
a

n
d

 

A
n

a
ly

s
e

 D
a

ta

D
e

fi
n

e
 

M
e

th
o

d
o

lo
g

y
 

&
 M

a
te

ri
a

ls

D
e

v
e

lo
p

 R
e

s
e

a
rc

h
 

P
ro

p
o

s
a

l

R
e

le
v
a

n
t

D
e

v
e

lo
p

 R
e

s
e

a
rc

h
 

P
h

ilo
s
o

p
h

y

Id
e

n
ti
fy

 I
s
s
u

e
s
 a

n
d

 

c
h

a
lle

n
g

e
s
 i
n

 

In
d

u
s
tr

y



 

17 

 

1.6 Research Scope 

The scope of the work is to address the uncertainties and assumptions of 

measurements required to build sand prediction models based on 

experimental, analytical, numerical and empirical analyses. It also assesses 

and evaluates the areas where artificial neural networks have also been 

employed in predicting parameters that are used as inputs into numerical 

models. 

 The scope of the thesis is limited to a data-driven model of an artificial 

neural-network to predict the onset of sand production in an oil /gas well 

based on data in the literature (Moricca, 1994). The onset of sand 

production is typically provided by measurements taken from a sand probe 

that is inserted in a flowline of an oil/gas well.  

1.7 Thesis Organization 

The thesis comprises six (6) main chapters. In Chapter 1, an introduction 

to the issues of sand production is underpinned with an explanation of an 

oil and gas production. The underlying physics and salient points pertaining 

to reservoir engineering and production optimisation for a typical oil and 

gas production system are introduced. The objectives are explicitly stated, 

and the scope of the work undertaken.  

 In Chapter 2, a literature survey of the vast amount of research that 

has spanned the last five decades in the field of sand production in term 

of the various models based on empirical, analytical experimental and 

numerical analysis. The use of artificial neural networks (ANN) is stipulated 

as a tool that would address the uncertainties and assumptions that were 

used in simplifying the mathematical analysis. 

 In Chapter 3, the methodology adopted in carrying out the work is 

explained in addressing the gaps existing in current research initiatives. 
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The materials that are required to realise the research endeavours are 

listed out.  

 In Chapter 4, the algorithm is described and developed underpins the 

importance of data pre-processing of the retrieved information. An 

appreciation of the statistical measures of the data and its corresponding 

probability distribution is analysed. Principal Component Analysis is 

introduced as a suitable data pre-processing and it is explored in detail, 

and the processed data is fed into a neural network autoregressive with 

exogenous inputs (NNARX).  

 In Chapter 5, the results are reported and discussed about the sand 

prediction system model when validated and tested with different inputs 

as determined by principal component analysis. 

 In Chapter 6, the thesis concludes and it precipitates areas of future 

work in the field of prediction and forecasting. 
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CHAPTER 2 
 

LITERATURE REVIEW 
                                                                                                                                                                                                                                                  

2.1 Introduction 

A current review of the integrity of the offshore facilities pertaining to 

erosion and corrosion problems, these being one of the root causes of 

major accident hazards, is picking up momentum as the oil and gas industry 

tightens up its realm on industrial and occupational safety (Jukes, 

Wittkower, and Poblete, 2009). Safety critical equipment is required to 

have performance standards to ensure that asset integrity is given its 

highest focus. Pragmatic solutions are required to address the problems in 

the facilities so as not to jeopardize continuous oil and gas production. 

Moreover, in order to prevent accidents and incidents in the oil and gas 

industry (Okstad, Jersin, and Tinmannsvik, 2012), there is a greater push 

from national regulators to ensure full compliance to health, safety and  

environment (HSE).  

 Advances in material science and engineering have undoubted 

brought more erosion and corrosion-resistance materials into the industry 

(Parsi et al., 2014). New facilities or greenfield projects will definitely 

benefit from the technology. However, existing and aging facilities under 

brownfield projects would need to invest in higher operating expenditure 

(OPEX) to ensure that fit-for-purpose monitoring systems (Speight, 2014) 

are put in place to ascertain the conditions of the piping, flowlines and 

pipelines connecting facilities within the oil and gas production system. 

 It is also recognized that sand is produced together with the oil and 

gas fluids in the process of producing oil and gas and is often referred to 

as sand production or solids production (Dehghani, 2010). Given that the 

erosive-corrosive effects are detrimental to the safe and continuous 

production of oil and gas, it is expedient that an understanding of the 
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underlying principles of sand production is fully comprehended. With newer 

methods of horizontal well drilling and completion, it is expected that there 

will be a higher probability of sand production. There are certain limits for 

the acceptable sand production, whereby, if these velocities are exceeded 

and allowed to continue for longer durations, further damage can be 

caused to not only the reservoir formation and downhole equipment, but 

more importantly on the surface equipment, flowlines, fittings and pipings. 

Sand-related failures can be of significant cost, which result in downtime 

and production deferment. To ensure that the financial payback period is 

optimised with larger profit margins, oil and gas are produced at higher 

production rates, resulting in higher velocities and thereby, causing 

damage to equipment. It is also recognized that erosion and corrosion 

problems due to sand production in aging assets have been overlooked 

(Popoola, Grema, Latinwo, Gutti, and Balogun, 2013), and hence, due 

attention required at higher management levels.  

 There is a whole range of monitoring systems available in the market 

offered to the oil and gas industry, and their effectiveness, limitations and 

advantages need to be understood (Brown and Davies, 2000). The release 

of hydrocarbon into the atmosphere as a result of a loss of containment 

(LOC) due to erosion, corrosion or their combined effects will expose a 

facility to high risk of fire that could escalate to an explosion. Early 

detection of these adverse effects is instrumental to an effective monitoring 

system to ensure that oil and gas facilities are safe to operate and produce 

(Rahman, Khaksar, and Kayes, 2010). Prediction of the onset of sanding 

and the amount of sand produced under a given set of conditions do not 

have models that currently exist in the industry (Addis, Gunningham, and 

Brassart, 2008). 

 As oil and gas fields that have been producing hydrocarbons begin to 

age and approach the end stage in their lifetime, sand production becomes 

eminent. The onset of sand production becomes a threat to a producing oil 
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or gas well with obvious financial implications. The financial implications 

are due to the intentional reduction in the production rates in order to 

lower the resulting velocity of solids in the fluid flow comprising oil, gas 

and water in their respective composition. Fluid flow containing solids 

(sand) with high velocity would undeniably bring about the erosive and 

corrosive consequences to the facility. To complicate matters the gas 

volume fraction (GVF) also plays a dominant role as to the transportation 

of solids in multiphase flow (Bello, Oyeneyin, and Oluyemi, 2011). 

 Petroleum production engineering is associated with activities 

concerned with the ability of a well to produce or inject at a flowrate against 

differential pressure drop in the near wellbore region i.e., the productivity 

or injectivity index. Reservoir engineering on the other hand, deals with 

the reservoir-at-large and the lifecycle of hydrocarbon recovery. Production 

engineering often deals with production optimisation to accelerate the 

production by increasing the well production or injection rate, but more 

importantly the reduction in the well drawdown, i.e., the difference 

between the driving reservoir pressure, and the flowing bottomhole 

pressure (FTBH). Although it is economically attractive to lower the FBHP 

to increase the production rate, it is not always desirable as there may be 

adverse effects associated with solids production, and in particular the risk 

of sand production (Bai, Santana, and Shen, 2011). One of the common 

objectives of reservoir engineering is to reduce the risk so that oil and gas 

wells can produce continuously, reliably and safely. Numerical reservoir 

simulation ensures that solids production in terms of sand, wax, scale, 

paraffin and asphaltene deposition are adequately understood, studied, 

analysed and engineered (Guo, 2007). 

 Figure 2-1 shows the different components in a complex interaction 

of reservoir inflow, flow through perforations and tubing outflow, well 

choke, surface pipelines and separators. 
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Figure 2-1: Petroleum production system: elements affecting well 
productivity- Source (Guo, 2007) 

 The pressure losses near the wellbore of an oil or gas well, due to 

formation damage has a reduced permeability and the zone with the 

altered permeability is known as skin (Van Everdingen, 1953). Skin effect 

accounts as in Figure 2-2 for the additional pressure drop necessary to 

overcome the flow resistance of the reduced permeability zone caused by 

drilling mud invasion, the effect of partial penetration or the effect of the 

penetrating contact angle of the well architecture. 
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Figure 2-2: Skin radius 𝑟𝑠 of the zone characterized by the skin with respect 

to the drainage radius - Source (Guo, 2007) 

 The single steady-state inflow performance of a reservoir for the oil 

flow rate 𝐪 assuming under-saturated conditions (gas in solution) is given 

by, 

 

𝑞 =
𝑘ℎ(𝑝𝑒 − 𝑝𝑤𝑓)

141.2𝐵𝜇 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-1) 

 

where, 𝑞 is the oil flow rate in Stock Tank Barrel/Day (STB/D) 
    𝑘 is the effective formation permeability in md 
    ℎ is the formation thickness in ft 
 𝑝𝑒 is the constant reservoir pressure in psi 

 𝑝𝑤𝑓 is the flowing bottomhole pressure in psi 

 𝐵 is the oil formation volume factor in RB/STB 
 𝜇 is the viscosity in cP 
 𝑟𝑒 is the certain border distance in ft 
 𝑟𝑤 is the wellbore radius in ft 
 𝑠 is the skin factor 

 

 Assuming that reservoir and near-the-wellbore pressures are above 

the bubble point, the expressions for the flow of oil 𝑞0 and water 𝑞𝑤 should 

consider the relative permeability reduction due to the effect of their 

respective phase’s saturation, 
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𝑞0 =
𝑘𝑘𝑟𝑜ℎ(𝑝𝑒 − 𝑝𝑤𝑓)0

141.2𝐵0𝜇0 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-2) 

𝑞𝑤 =
𝑘𝑘𝑟𝑤ℎ(𝑝𝑒 − 𝑝𝑤𝑓)𝑤

141.2𝐵𝑤𝜇𝑤 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-3) 

where 𝐤𝐫𝐰 and 𝐤𝐫𝐨 are the respective permeability of water and oil in a 

two-phase reservoir. Water saturation near the wellbore will invariably 

lower the oil flow (Guo, 2007).  

 

Figure 2-3: Damage wellbore 

The skin factor 𝑠 can be related to formation and damage permeability 𝑘, 

damage penetration 𝑘𝑠  and well radius 𝑟𝑤 for a given 𝑟𝑒 by (Hawkins Jr., 

1956)  

𝑠 = (
𝑘

𝑘𝑠
− 1 ) . 𝐼𝑛 (

𝑟𝑒
𝑟𝑤

)  (2-4) 

 

where, 𝑘 is the formation and damage permeability 
 𝑘𝑠 is damage penetration 
 𝑠 the skin factor 
 𝑟𝑒 is the reservoir radius 
 𝑟𝑤 is the wellbore radius 
 𝑠 the skin factor 
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2.1.1 Productivity Index 

The productivity index 𝐽∗ (BOPD/psi) above the bubble point pressure 𝑝𝑏, 

when there is no water production, is the ratio between the oil flow rate 𝑞𝑏 

and the pressure drawdown is given by (Dake, 1998). 

 𝐽∗ =
𝑞𝑏

𝑝𝑒 − 𝑝𝑤𝑓
 
7.08𝑘ℎ 

(𝑝𝐷) + 𝑠
(

𝑘𝑟𝑜

𝜇0𝐵0
)  ;   𝑓𝑜𝑟 𝑝𝑤𝑓 < 𝑝𝑏 (2-5) 

 

where, 𝐽∗ is the productivity index (BOPD/psi)  
 𝑞𝑏 is the oil flow rate in Stock Tank Barrel/Day (STB/D)  
 𝑘 is the effective formation permeability in md 
 ℎ is the formation thickness in ft 
 𝑝𝑏 is the bubble pressure point 
 𝑝𝑒 is the constant reservoir pressure in psi 

 𝑝𝑤𝑓 is the flowing bottomhole pressure in psi 

 𝐵 is the oil formation volume factor in RB/STB  
 𝜇 is the viscosity in cP 
 𝑟𝑒 is the certain border distance in ft 
 𝑟𝑤 is the wellbore radius in ft 
 𝑠 is the skin factor 

2.1.2 Inflow Performance Relationship 

The objectives of production optimization may be to enhance reservoir 

inflow performance or to reduce outflow performance. The results could be 

more production with less pressure drawdown. The understanding of 

reservoir inflow, wellbore vertical lift and surface facilities pressure 

constraint is necessary to optimize the field production performance and 

should be considered when addressing issues associated to sand 

production.  

 The Inflow Performance Relationship (IPR) and its corresponding 

graph of flow rate against the downhole flowing bottomhole pressure that 

typically characterizes the well performance is depicted in Figure 2-4. 
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Figure 2-4: IPR and the effects of drawdown to production - Source: (Guo, 
2007) 

2.2 Multiphase flow with Sand  

The main flowpath components after a wellhead are the following; 

production choke, elbows, tee-caps, valves, and other instrumentation. 

These flowpath components are "hot spots" with a high likelihood of 

erosion affecting these components when sand is produced in the entrained 

fluid from an oil or gas production well. The combined effects of the 

erosive/corrosive nature of sand produced will result in pinhole leaks at 

these hot spots if sand production is excessive. Pinhole leaks, if undetected 

for a considerable time will lead to a gas cloud being formed, that could 

potentially result in an explosive mixture and eventually an explosion. Sand 

erosion probes when deployed primarily for this purpose are also known as 

pressure trigger probes because a shutdown on the wellhead control panel 

(WHCP) is triggered by a pressure transducer when the pressure-contained 

tube in the probe is breached or penetrated by the high velocity sand 

particulates in the produced fluids. In the recent decade or so, sand erosion 

probes have been designed for continuous monitoring. 

 Fluid dynamics in terms of velocity limits are also an integral part of 

an understanding of the erosive and corrosive effects of sand production. 

It is these effects, more than any other that has driven oil and gas 

operating companies to take the necessary measures to ensure that the 
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safety of its people and assets are given the utmost priority so that the 

Health Safety and Environment (HSE) issues are adequately and strictly in 

compliance. Bends in flowlines commonly referred to as elbows are highly 

vulnerable for oil and gas wells that produce fluids with entrained solids 

(Mazumder, Shirazi, and McLaury, 2008). Gradual metal loss occurs from 

the inner walls of process equipment and fitting because of repeated 

impact of suspended solids in entrained fluids of oil and gas production. 

The thinning of walls of elbows due to erosion results in the process 

equipment not being able to withstand the original design pressure. Sand 

erosion in single-phase flow is difficult to predict due to the different 

interacting parameters. 

 The new DNV Recommended Practice O501 provides valuable tools 

for dimensioning of piping systems and components, optimisation of 

production, and inspection and maintenance planning (Veritas, 1996). The 

DNV erosion model calculates erosion rates using real time data such as 

sand signal, flow, temperature and pressure and additional information 

based on statistical and historical data. Data from both intrusive and non-

intrusive sand probes, depending on the principle of operation, has to be 

fed into a sand erosion prediction for sand and erosion rates to be 

calculated.  

2.2.1 Single-Phase and Multiphase Flow 

The single steady-state inflow performance of a reservoir for the oil flow 

rate 𝐪 assuming under-saturated conditions (gas in solution) is given by, 

𝑞 =
𝑘ℎ(𝑝𝑒 − 𝑝𝑤𝑓)

141.2𝐵𝜇 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-6) 

 

where, 𝑞 is the oil flow rate in Stock Tank Barrel/Day (STB/D)  
 𝑘 is the effective formation permeability in md 
 ℎ is the formation thickness in ft 
 𝑝𝑒 is the constant reservoir pressure in psi 
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 𝑝𝑤𝑓 is the flowing bottomhole pressure in psi 

 𝐵 is the oil formation volume factor in RB/STB  
 𝜇 is the viscosity in cP 
 𝑟𝑒 is the certain border distance in ft 
 𝑟𝑤 is the wellbore radius in ft 
 𝑠 is the skin factor 

 

 Generally, water produced with the oil exists partly as free water and 

partly as water-in-oil emulsion. In some cases, however, when the water–

oil ratio is very high, oil-in-water rather than water-in-oil emulsion will 

form. Along with the water and oil, gas will always be present and, 

therefore, must be separated from the liquid. The volume of gas depends 

largely on the producing and separation conditions. 

 Assuming that reservoir and near-the-wellbore pressures are above 

the bubble point, the expressions for the flow of oil 𝑞0 and water 𝑞𝑤 should 

take into account the relative permeability reduction due to the effect of 

their respective phase’s saturation, 

𝑞0 =
𝑘𝑘𝑟𝑜ℎ(𝑝𝑒 − 𝑝𝑤𝑓)0

141.2𝐵0𝜇0 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-7) 

𝑞𝑤 =
𝑘𝑘𝑟𝑤ℎ(𝑝𝑒 − 𝑝𝑤𝑓)𝑤

141.2𝐵𝑤𝜇𝑤 [𝐼𝑛 (
𝑟𝑒
𝑟𝑤

) + 𝑠]
 (2-8) 

 

where, 𝑞0 is the flow of oil 
 𝑞𝑤 is the flow of oil 
 𝑘𝑟𝑤 is the permeability of water in a two-phase reservoir 
 𝑘𝑟𝑜 is the permeability of oil in a two-phase reservoir 

Water saturation near the wellbore will invariably lower the oil flow (Guo, 

2007).  

2.2.2 Sand Erosion in Multiphase Flow  

Sand erosion in multiphase flow is a different phenomenon altogether and 

various regimes have been investigated in depth (McLaury, Shirazi, and 
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Rybicki, 2010). In the past, prediction of multi-phase flow models was 

empirical and was heavily dependent on the accuracy of flow experiments. 

Mechanistic models were developed to predict multiphase flow comprising 

oil, gas and sand particles upstream of elbows flowing under different flow 

regimes for annular and slug flow. Annular flow experiments were primarily 

performed in the vertical run, while slug flow was carried out on the 

horizontal piping run. The mechanistic models were improved to predict 

sand erosion under the different flow regimes based on the gas-liquid flow. 

 A comprehensive review on the erosion of elbows of hydrocarbon 

production has been produced in this respect by the National Engineering 

Laboratory (NEL) on behalf of the UK Health and Safety pertaining to the 

hydrocarbon production (Osu, 2004). An overview is given of different 

erosion mechanisms and the factors that influence them. The report looks 

at particulate erosion in more detail, particularly erosion on elbows in terms 

of its corresponding mathematical equations and physics constraints. The 

undetected release of hydrocarbon gases from pinhole leaks from elbows 

could result in a loss of containment with a gas cloud forming near the 

leak. If the gas release remains unnoticed or undetected, the likelihood of 

an explosion is high in the event that a source of ignition is present.  

2.2.3 Tool for Flow Modeling 

Various modelling techniques have been developed with the aid of 

computational fluid dynamics (CFD) and have in recent past, being 

increasingly used to understand the dynamics of flow profiles with 

entrained solids in the production fluid in flow geometries such as elbows, 

valves, reducers, enlargers, etc (Wallace, Dempster, Scanlon, Peters, and 

McCulloch, 2004). A number of equations are derived for the particular flow 

profile and the dynamics of the flow is modelled using commercially 

available software.  
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 CFDs have helped engineers to understand flow profiles visually 

(Zhang, McLaury, and Shirazi, 2009). The turbulent velocity profile in the 

near-wall region and the effect on particle impact velocity was investigated 

and simulation results showed that the particle impact velocity is affected 

significantly when near-wall velocity profile is implemented. In addition, 

the effects of particle size were investigated in the near-wall region of a 

turbulent flow in elbows with smaller radius. CFD software would have 

otherwise required minicomputers a decade or two ago, which was not 

commercially attractive and affordable by individuals or small-scale 

research, while today desktop PC’s and laptops are readily available to the 

engineering community. The governing equations are of prime importance 

as in the case for any mathematical-base modelling techniques. Other 

parameters such as sand particle size, flowline diameter and velocity are 

but a few of the parameters that are required for a successful CFD model 

to be visualized. 

 The study of sand erosion on process piping and components was 

carried out using CFD, to assess the behaviour of sand erosion on both 

standard pipe components and complex geometries (Huser and Kvernvold, 

1998). This led to new Det Norske Veritas (DNV) procedures based on CFD 

to predict sand erosion in typical pipe components such as pipe bends, 

blinded Tee bends, straight pipes, welds and reducers (DNV, 2007). The 

standard provides valuable tools for dimensioning of piping systems and 

components, optimisation of production, and inspection and maintenance 

planning. 

2.3 Equipment and Measurement Technology 

Different sand monitoring that are commercially available in the oil and gas 

industry are evaluated for multiphase flow (Shirazi, Ali, and McLaury, 

2000). Data collected from these sand monitoring devices were analysed 

and evaluated against models that calculate particle impact velocities and 
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erosion rates. The important finding was that there is a correlation between 

the outputs from the sand detectors and the erosion model, thereby 

allowing results from sand detectors to be interpreted using the erosion 

model.  

 Both intrusive-type sand probes and the extrusive or non-invasive 

acoustic sensors as shown in Figure 2-5 have their strengths depending on 

their applications and purpose of their installations (Salama, 2000). 

 

Figure 2-5: Erosion and Corrosion Measurement technologies 

 Each of the technologies employed have their advantages and 

disadvantages and their usage in the different applications warrants some 

discussions. 

2.3.1 Performance Analysis of Measurement Technology 

The various technologies in Table 2-1 deployed in the oil and gas industry 

for monitoring the erosive-corrosive effects of sand are assessed and 

compared. 

Table 2-1: Comparison table for sand monitoring tools 

Measurement 
Technology 

Advantages Disadvantages 

Intrusive 
Monitoring: 

  

Corrosion 
Coupons 

Simple measurement of 
loss in weight of coupon 
because of corrosion for 
pipelines in general. 

Corrosion is pre-dominantly 
due to water and presence 
of corrosive products and 
not by sand production. 

• Corrosion Coupons

• Corrosion Probes

• Electrical Resistance (ER) 
Probes

• Pressure Trigger Probes

Intrusive

• Ultrasonic

• Field Signature Monitoring

• Wall Thickness Measurement
Non-Intrusive



 

32 

 

Measurement 
Technology 

Advantages Disadvantages 

Electrical 
Resistance-
based Erosion 
probe  

Real-time and direct 
measurement of metal 
loss on the probe is 
correlated with the wall 
thickness loss of the 
flowline. 

When elements on the probe 
are depleted, replacement 
required with a well to shut 
down. Economic implications 
associated with production 
deferment. Functionality 
depends on where the probe 
is located on the flowline for 
it to be reliable. 

Pressure-
trigger Probe 

Erosion due to sand 
particles will eventually 
breach the tip of the 
probe, and hence 
preventing further 
erosion to the 
equipment, by triggering 
an automatic shutdown 
of the well. 

Reactive as it does not 
provide proactive monitoring 
of sand production. Performs 
reliably if it is placed at the 
correct location in the 
flowline. 

Non-Intrusive 

Monitoring: 
  

Acoustic 

measurement 

Device is clamped onto 
the flowline, and there is 
no need for dedicated 
access fitting on the 
flowline for installation. 

As it is acoustic, device 
calibration equipment is 
required to inject sand into 
the flowline to eliminate the 
background. 

Wall-thickness 

measurement 

Mats are can easily be 
installed at elbows and 
piping bends at locations 
that have been 
determined. 

Wall thickness loss is pre-
dominantly due to corrosion 
rather than sand production. 

Field signature 

method 

Provides information 
about erosion and 
corrosion due to metal 
loss. 

Bulky and expensive and are 
pre-dominantly used for 
subsea pipelines. 

 

 From Table 2-1, a sand monitoring device that calculates metal loss 

and provides real-time measurement to a system is desirable. The electrical 

resistance-based erosion probe provides a direct measurement of metal 

loss and was selected for the monitoring of sand production. Upon 
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depletion of the elements on the probe, the probe needs to be replaced 

once the threshold is reached. The installation of the probe is crucial to 

ensure its effectiveness in the measurement of metal loss. The sand 

erosion probe is selected to monitor the onset of sand production.  

2.3.2 Typical Instrumentation of Oil or Gas Well 

In order to control and optimise production of oil and gas wells, it is 

important that these wells are adequately provided with at least 

transmitters to measure pressure and flow parameters. More importantly, 

the co-production of sand as a by-product in some cases needs to be 

monitored. If sub-surface gravel packing is installed at the onset of the 

design of the oil and gas well, then the likelihood of sand production is 

slim. Failures of downhole sand control is common and the risk needs to 

be managed accordingly to ensure that wells could produce that do not 

require intervention due to downhole sand screen failures (Guinot, Duncan, 

Douglass, Orrell, and Stenger, 2009). However, given the uncertainty of 

sand production, most wells are equipped for monitoring sand. This is to 

ensure that the equipment on the surface facilities is not subjected to 

excessive effects of erosion and corrosion. 

 A typical oil or gas well is instrumented with the following 

instrumentation as depicted in Figure 2-6. The tubing head pressure (THP) 

transmitter is located between the wellhead and the choke valve and 

measures the pressure of the tubing of the well up to the wellhead. 

Transmitters for the flowline pressure (FLP) and wet gas flow (WGF) of the 

unstabilised fluid are measured after or downstream of the choke valve. 

Annuli pressure management requires that the casing head pressure (CHP) 

be being monitored for well integrity. A typical oil or gas well that is likely 

to co-produce sand will normally be designed with erosion (EL) and 

corrosion (CL) probes that measure metal loss due to erosion and 

corrosion, respectively. 
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 Getting these process measurements from the remote fields is a 

challenging task. However, with cost justifications, remote telemetry units 

(RTU’s) can be deployed to these fields in order to obtain real-time process 

measurements. 

THP : Tubing Head Pressure

CHP : Casing Head Flow

WGF : Wet Gas Flow

FLP : Flow Line Pressure

CL : Corrosion Loss Probe

EL : Erosion Loss (Sand) Probe

 

 

THP

CHP

ELWGF

Note

WELLHEAD

SURFACE

SUB-SURFACE

Note:
Choke Valve - for Gas 
Well

Bean-Box  - for Oil 

FLP

CL

 

Figure 2-6: Instrumentation and equipment of a typical oil or gas well 

2.3.3 Feasibility and Costing of Current Approach  

In the current approach, sand production rates are deduced from process 

parameters that are normally available on a typical oil or gas well. A typical 

oil or gas well is usually provided with instrumentation to measure process 

parameters such flow, pressure, temperature, etc, as deemed required. In 

a typical smart field approach, remote monitoring and control are the basic 

requirements of these process parameters so that oil and gas production 

could be optimized. A data communication infrastructure would normally 

be available to facilitate the polling of these process parameters and 

therefore, it is highly feasible as these data are required for other purposes. 

The incremental cost associated with the current approach would be 
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minimal and would be related to building a model of the facility, the efforts 

on data pre-processing, training of the neural nets, implementation on the 

Operator DCS, etc.  

2.4 Solids Production from Formation Sand 

The pressures that are built-up in the sub-surface region of the producing 

well drive sand production. Solid particles produced with hydrocarbons 

from a reservoir sometimes follow the reservoir fluid into the wellbore and 

appear at the surface as sand. The amount of solids produced can vary 

from miniature to catastrophic amounts that could possibly lead to a 

complete filling of the borehole. It is estimated that seventy percent of the 

world’s hydrocarbon reserves are contained in reservoirs where solids 

production is likely to become a problem at some point in time (Penberthy, 

WL and Shaughnessy, 1992). The modelling of sand production requires 

the coupling of two basic mechanisms (Rahmati et al., 2013). 

• Mechanical instability and degradation around the wellbore 

• Hydromechanical instability due to flow-induced pressure gradient on 

degraded material surrounding the cavity i.e., the perforation and 

open hole.  

 The phenomenon of sand production involves processes that can be 

broken into three main stages (Detournay, Tan, and Wu, 2005).  

• Tensile or compressive failure within the vicinity of the perforation or 

open hole and its progression further into the formation 

• Dislodgment or disaggregation of sand particles from the failed 

section of the formation 

• Movement of those particles into the wellbore, and then to the surface 

if settlement does not occur.  

 The relatively simple analytical models for the onset of sand 

production show that two groups of data are required for sand prediction:  

• rock properties (primarily strength) 
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• conditions of the formation (in situ stresses and pore pressure) 

 Stress changes induced during depletion of oil or gas wells are usually 

difficult to predict but it is of vital importance for the prediction of reservoir 

compaction and permeability alterations, and conventional assumptions of 

constant overburden and the absence of lateral deformation may be highly 

inaccurate (Papamichos, Vardoulakis, Tronvoll, and Skjaerstein, 2001). 

 Observations of sand production can be classified in three types 

(Fjær, Holt, Horsrud, Raaen, and Risnes, 2011). 

• Transient sand production, where a burst of sand is followed by a 

continuous production of sand with declining rate under constant 

conditions.  

• Continuous sand production, where sand is continuously produced at 

a relatively constant rate. 

• Catastrophic sand production, where sand is produced at such a high 

rate that the well is choked. 

 There is insufficient force to pull sand grains out of rock that is intact 

by the flowing fluid in the wellbore. However, sand production may only 

occur if the rock near the producing cavity is unconsolidated or has been 

damaged. The onset of sand production is therefore, closely related to 

stress-induced damage of the rock (Tronvoll and Fjær, 1994).  

 Monitoring of sand production is usually based on measurements or 

observations at the surface. However, the produced sand will only reach 

the surface if the well flow is sufficiently strong to carry the sand grains all 

the way up through the well. Thus, sand transport in the well is also a 

significant part of the sand production problem. 

2.5 Modelling of Rock Properties 

Rocks are generally composite materials, and hence inhomogeneous on a 

microscopic scale. The behaviour of rocks in terms of their elastic response 
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and failure stresses etc., depend on the void space is essential for oil to be 

produced from a reservoir. The approach based on the macroscopic 

description of porous and permeable media, allows the study of both static 

and dynamic mechanical properties (Biot, 1941). 

2.5.1 Porosity, 𝝓  

The porosity, 𝜙 of a porous medium is defined as the fraction of the bulk 

volume that is occupied by void space, which means that 0 ≤ 𝜙 < 1. 

Likewise, 1−𝜙 is the fraction occupied by solid material (rock matrix). The 

void space generally consists of two parts; the interconnected pore space 

that is available to fluid flow, and disconnected pores  that is unavailable 

to flow and it is therefore common to introduce the so-called “effective 

porosity” that measures the fraction of connected void space to bulk 

volume (Lie, 2014). 

 For non-rigid rocks, the porosity is usually modelled as a pressure-

dependent parameter and hence, it is compressible, having a rock 

compressibility defined by: 

𝑘 =
1

𝜙

𝑑𝜙

𝑑𝑝
=  

𝑑𝑙𝑛(𝜙)

𝑑𝑝
 (2-9) 

 

where, 𝑘 is the rock compressibility 
 𝜙 is the porosity of the porous medium  
 𝑝 is the overall reservoir pressure 

2.5.2 Permeability, 𝑲 

The permeability is the basic flow property of a porous medium and 

measures its ability to transmit a single fluid when the void space is 

completely filled with this fluid. The precise definition of the permeability 

K is the proportionality factor between the flow rate and an applied 

pressure or potential gradient.  
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𝑢⃗ = −
𝐾

𝜂
𝛻𝜙 (2-10) 

where 𝜂 is the fluid viscosity and 𝑢⃗  is the superficial velocity, i.e., the flow 

rate divided by the cross-sectional area perpendicular to the flow. 

 The permeability is a function of porosity and assuming a laminar flow 

(low Reynolds numbers) in a set of capillary tubes, one can derive the 

Carman–Kozeny relation,  

𝐾 =  
1

8𝜏𝐴𝑣
2

𝜙3

(1 − 𝜙)2
 (2-11) 

which relates permeability to porosity φ, but also shows that the 

permeability depends on local rock texture described by tortuosity 𝜏 and 

specific surface area 𝐴𝑣. The tortuosity is defined as the squared ratio of 

the mean arc-chord length of flow paths, i.e., the ratio between the length 

of a flow path and the distance between its ends (Lie, 2014).  

2.5.3 Critical drawdown for Cylindrical Cavities 

A necessary condition for sand production is that the rock is unconsolidated 

or has been damaged by some other mechanism caused by the effective 

stresses in the vicinity of the producing cavity. The effective stresses 

depend on several factors, in particular the far-field in situ stresses, the 

pore pressure, the geometry of the producing cavity and the rock 

properties. A criterion for sand failure around a producing opening, caused 

by the in-situ stresses. 

 Drawdown, 𝑝𝑑, is used to describe the pressure conditions in the well 

and is defined as the difference between the pore pressure 𝑝𝑓0 far from 

the well and well pressure  𝑝𝑤 is given by. 

𝑝𝑑     =  𝑝𝑓𝑜 – 𝑝𝑤 (2-12) 
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When the well pressure has been reduced such that the well starts to 

produce sand, critical drawdown 𝑝𝑑
𝑐  for sand production in the well has 

been reached (Fjær et al., 2011). 

 The condition for shear failure at the wall of a cylindrical hole can be 

derived from expressions for the stresses at the cavity wall combined with 

a failure criterion. Consider first the simple case where the effective minor 

horizontal principal stress (𝜎ℎ
′ ) is isotropic i.e., principal axes of stress and 

the principal axis of strain coincides. During production, the pore pressure 

at the cavity wall with radius, 𝑅𝑐 is 𝑝𝑓(𝑅𝑐) = 𝑝𝑤, and the smallest principal 

stress is,  

𝜎𝜃(𝑅𝑐) =  2𝜎ℎ  −  𝑝𝑤  −   
1 −  2𝜈𝑓𝑟

1 − 𝜈𝑓𝑟 
𝛼 (𝑝𝑓0 − 𝑝𝑓(𝑅𝑐)) (2-13) 

 Failure according to the Mohr–Coulomb failure criterion, requires that,  

𝜎𝜃(𝑅𝑐) − 𝑝𝑓(𝑅𝑐) =  𝐶0  −   〖(𝜎〗𝑟(𝑅𝑐) − 𝑝𝑓(𝑅𝑐)) 𝑡𝑎𝑛2𝛽 (2-14) 

 Solution of these equations in terms of 𝑝𝑤 gives the lower well 

pressure limit 𝑝𝑤,𝑚𝑖𝑛 failure is initiated. Critical drawdown 𝑝𝑑
𝑐   for the cavity 

is defined as, 

𝑝𝑑
𝑐  =  𝑝𝑓𝑜  −  𝑝𝑤,𝑚𝑖𝑛 (2-15) 

 Assuming that the rock is sufficiently soft so that the Biot constant 𝛼 

~ 1, the solution of Eqs. (2-13) and (2-14) can be expressed as:  

𝑝𝑑
𝑐  =  (1 − 𝜈𝑓𝑟)(𝐶0  −  2𝜎ℎ

′ )  (2-16) 

 Figure 2-7 illustrates the shear failure criterion Equation (2-15) 

graphically of a characteristic relationship between critical drawdown 𝑝𝑑
𝑐  

and uniaxial compressive strength 𝐶0 for a cylindrical cavity. 
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Figure 2-7: Characteristic relationship for a cylindrical cavity 

 The simplistic model shows that minimum formation strength is 

required in order to prevent rock failure during production. It also shows 

that the critical drawdown depends on the effective stresses far from the 

well, such a way when the reservoir depletes, the far-field fluid pressure 

𝑝𝑓𝑜 is reduced. The implication is the probability for sand production 

increases as the reservoir is produces under constant drawdown.  

 Apart from shear failure, another failure mechanism to be considered 

is tensile failure. At the cavity wall, the radial stress, 𝜎𝑟 and the pore 

pressure, 𝑝𝑝 are both equal to the well pressure, 𝑝𝑤 implying that the 

effective radial stress is zero at the cavity wall (Fjær et al., 2011). 

 An increasing pore pressure gradient becoming larger than the radial 

stress gradient at the cavity wall, will cause the effective radial stress to 

be negative and provides a precursor for a minimum criterion for tensile 

failure inside the cavity wall.  

𝜕𝑝𝑓

𝜕𝑟
|
𝑟= 𝑅𝑐 

> 
𝜕𝜎𝑟

𝜕𝑟
|
𝑟= 𝑅𝑐

 (2-17) 

 If the tensile strength is larger than zero, this criterion may not be 

sufficient for tensile failure to occur (N Morita and Whitfill, 1989). The 

normalized drawdown pressure gradient 𝑔𝑝𝑛 is defined as, 

𝑔𝑝𝑛    = 𝑅𝑐

𝜕𝑝𝑓

𝜕𝑟
|
𝑟= 𝑅𝑐 

 (2-18) 

 
 𝑝𝑑

𝑐  

 

 
                                              

                                       C0  
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where 𝑅𝑐 is the radius of the cavity. The critical drawdown pressure 

gradient 𝑔𝑝𝑛
𝑐  is the largest possible normalized drawdown pressure gradient 

without sand failure. 

𝑔𝑝𝑛
𝑐  = 𝑅𝑐

𝜕𝜎𝑟

𝜕𝑟
|
𝑟= 𝑅𝑐 

 (2-19) 

 Consider the simple case of a cylindrical cavity in a formation where 

the stress is isotropic. Assuming 𝑅𝑜 ≫ 𝑅𝑤  and 𝜎𝑟𝑜 ≫ 𝜎ℎ  the radial stress 

equation simplifies to 

𝜎𝑟 = (1 −
𝑅𝑤

2

𝑟2
)𝜎ℎ +

𝑅𝑤
2

𝑟2
𝑝𝑤 +

2𝜂

𝑟2
∫ 𝑟′

𝑟

𝑅𝑊

∆𝑝𝑓(𝑟
′)𝑑𝑟′ (2-20) 

 Taking the derivative with respect to 𝑟 we find that the critical 

drawdown pressure gradient is given as,  

𝑔𝑝𝑛
𝑐 = 2 [𝜎ℎ − 𝑝𝑤 − (𝑝𝑓𝑜 − 𝑝𝑤)𝛼

1 − 2𝑣𝑓𝑟

2(1 − 𝑣𝑓𝑟)
] (2-21) 

 Drawdown and pore pressure gradient are the two criteria which limit 

the range for sand free production. The conditions illustrated graphically in 

Figure 2-8 is the elementary version of a sand production stability diagram 

(N Morita and Whitfill, 1989). 

 

Figure 2-8: Stability diagram for production cavities. 
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2.5.4 Sand Arches 

Sand production has been associated with a phenomenon known as sand 

arching. Granular grains such as those from the well's formation material 

grains become interlocked through friction and cohesive forces that creates 

an arch shaped structure as depicted in Figure 2-9 and is able that to 

provide enough resistance to withhold forces due to mechanical and 

hydrodynamic stresses. 

 

Figure 2-9: Establishment of sand arch at the wellbore 

 Sand arching experiments were conducted with unconsolidated sand 

which provided the underlying principles of sand arch formation, 

stabilization, and failure where it was observed the possibility of 

maintaining sand arches (Bratli and Risnes, 1981; Hall and Harrisberger, 

1970). Sand arches may be formed when damaged rock or loose sand is 

pushed towards the small, perforated holes in the casing. Moreover, rocks 

that have been severely damaged can form a sand arch around a cavity 

assisted by capillary forces. The collapse and reforming of sand arches in 

the perforation cavity under increasing fluid gradient were studied and 

observed (Bratli and Risnes, 1981). Sand arch failure can occur due to a 

different mechanism driven by tensile failure on the face of the cavity. The 

only parameter that depends on the fluid flow is the pore pressure gradient. 

If permeability reduction occurs due to fines migration, the pore pressure 

gradient increases and tensile failure is more likely to happen. 
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 Although unconsolidated or damaged rock is a necessary condition, 

but it is not necessarily a sufficient condition for sand production. Damaged 

rock could form stable sand arches that allow for sand free production at 

significantly higher drawdowns contrary to that determined by rock failure 

conditions. However, on exceeding the stability limit for the sand arches, 

sand will be produced into the well through the perforation tunnel into the 

wellbore (Fjær et al., 2011).  

2.6 Sand Production Prediction Techniques 

2.6.1 Rock Mechanics Parameters 

It is important that the parameters pertaining to rock mechanics are 

identified so that the interactive nature amongst the parameters can be 

studied and results can be correlated to the onset of sand production and 

in the relative and absolute quantification of volumetric sand rates. Table 

2-2 list a summary of the work that has been carried out on the various 

parameter to substantiate the underlying modelling techniques that have 

been adopted in the production of  formation sand (Khamehchi, Kivi, and 

Akbari, 2014). 

Table 2-2: Parameters causing breakaway of formation sand   

Rock Mechanics Parameters  Literature 

In-situ stresses, drawdown pressure, flow rate 
of different fluids from reservoir to the well, 
strength and mechanical properties of the 
reservoir rock, perforation density, fluid 
density and reservoir pressure.  

 Veeken et al., 1991; 
Ghalambor and Asadi, 
2002; Weissenburger 
et al.,1987.  

Reservoir permeability   Veeken et al., 1991; 

Morita et al., 1989.  

Perforation depth   Veeken et al., 1991; 
Ghalambor and Asadi, 
2002.  

Reservoir thickness   Veeken et al., 1991; 
Han et al., 2011.  
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Rock Mechanics Parameters  Literature 

Wellbore inclination   Veeken et al., 1991; 
Weissenburger et al., 
1987. 

Shale volume and porosity   Ghalambor and Asadi, 
2002. 

With sufficiently large flowrate, tensile net 
stresses can be induced in the surrounding 
formation and cause sand tensile failure 

  (Nouri et al., 2006; 
Weingarten and 
Perkins, 1995).  

Increase in in-situ stress and drawdown causes 
increase in shear stresses. If the shear stress 
increases to the point that the formation 
generally fails in shear (i.e., a function of the 
reservoir rock properties), weakly cemented 
rock may become disaggregated  

 Morrica et al., 1994; 
Weingarten and 
Perkins, 1995. 

Compaction effect of the net overburden stress   Morrica et al., 1994. 

Presence of large volume of low permeability 
shales in the bulk rock may increase rock 
strength and decrease flow rates which 
consequently lowers the probability of sand 
production in shaly sands  

 Ghalambor and Asadi, 
2002. 

Water inflow into a hydrocarbon bearing may 
cause changes in relative permeability or 
weakening the overall strength of the rock 

 Nouri et al., 2006.  

Chemical interactions may also occur between 
the water and the rock cementation and affect 
the sand production  

 Weingarten and 
Perkins, 1995.  

Destruction of capillary induced cohesion 
between the grains due to increase of water 
saturation 

 Nouri et al., 2006; Han 

and Dusseault, 2002. 

Presence of water enhances the sand 
production severity if sand production is 
already underway. 

 Morrica et al., 1994. 

 

 Fundamental research work has been carried out by various 

researchers on the key parameters in the field of rock mechanics. The 

outcome of the research is to predict if sand production will occur in the 

early life of a well and it is primarily used in the field development planning 

stage. Based on these parameters, well design would include downhole 
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sand control in which case gravel packs and screens will be part of the well 

design. Key risk decisions are made on these assumptions of these rock 

mechanics parameters and carry a high degree of uncertainty and will 

invariably increase the cost of the well design. 

2.6.2 Sanding Criteria 

The criteria for sand production is based on the premise that sand arches 

are formed in the cavity closed to the well bore, and that these arches can 

collapse and when subjected to axial and radial stresses and strains. The 

sanding criteria in Table 2-3 provides a summary of the work in the 

literature  (Azad, Zargar, Arabjamaloei, Hamzei, and Ekramzadeh, 2011).  

Table 2-3: Sanding criteria resposible for release of fomation sand 

Sanding Criteria Literature 

Shear and tensile failure  (Antheunis et al., 1976; 
Bratli and Risnes, 1981; 
Perkins and Weingarten, 
1988; Morita, Whitfill, 
Fedde, et al., 1989; Morita, 
Whitfille, Massie, et al., 
1989; Van den Hoek et al., 
1996) 

Critical pressure gradient criteria  (Risnes et al., 1982; Morita, 
Whitfill, Fedde, et al., 1989; 
Morita, Whitfille, Massie, et 
al., 1989; Weingarten and 
Perkins, 1992)  

Critical plastic deformation  (Morita and Fuh, 1998)  

Erosion base  (Philips and Whitt, 1986; 
Tronvoll et al., 1992, 1997; 
Papamichos and 
Malmanger, 1999)  

Mechanisms include drawdown, 
draw-down rate (ramp-up strategy), 
depletion, flow rate, water-cut, 
completion strategy (e.g., size, 
phasing, and orientation of 

(Nouri, Vaziri, Kuru, and 

Islam, 2006) 
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Sanding Criteria Literature 

perforations) and frequency of shut-
downs and start-ups.  

Effect of water breakthrough  (Han and Dusseaut, 2002; 

Vaziri et al., 2002, 2004) 

 

 Based on the understanding of rock mechanics parameters, various 

models were built and the criteria for formation sand to be released into 

the well bore were carried out. Shear and tensile stresses within the 

reservoir lend themselves in the understanding of the sand production. The 

effect of water breakthrough in the later life of the well, drawdown, 

flowrate, amongst other criteria were better understood. However, all 

these are based on experimental, numerical and analytical methods with 

assumptions made for the parameters based on rock mechanics. 

2.7 Sand Erosion Prediction Tool 

The new DNV Recommended Practice O501 (DNV, 1999) provides valuable 

tools for dimensioning of piping systems and components, optimisation of 

production, and inspection and maintenance planning. The DNV erosion 

model calculates erosion rates using real time data such as sand signal, 

flow, temperature and pressure and additional information based on 

statistical and historical data. Data from both intrusive and non-intrusive 

sand probes, depending on the principle of operation, has to be fed into a 

sand erosion prediction for sand and erosion rates to be calculated. 

 Feedforward back-propagation network (BPN) and the generalized 

regression neural network (GRNN) architectures to predict important 

sanding indication parameters for gas wells (Kanj & Abousleiman, 1999) 

was carried out using data available in the public domain data has been 

devised and validated. The neural network system took the following inputs 

for the wells; total vertical depth, transit time, formation cohesive strength, 
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water and gas rates, drawdown pressure, original static reservoir pressure, 

effective overburden stress, interval length, and perforation density. 

 Neural networks have been applied to obtain real-time and well-

specific grain-size distributions to improve gravel-pack design and achieve 

optimum sand control (Faga and Oyeneyin, 2000). Neural networks have 

been applied with success to predict grain-size distributions from well logs. 

 An intelligent sand management strategy (Oyeneyin, Macleod, 

Oluyemi, & Onukwu, 2005)  is a key enabler to reliable sand prediction. 

The work provided a straightforward way of integrating real-time data into 

a reservoir-management process, and its methodology implies how to gain 

value from the information provided by a continuous data stream. Sand 

production could be a transient phenomenon, and needs to be given 

constant attention, to detect catastrophic downhole sand failures that 

would have adverse economic effects on the production of oil and gas. 

 The need to optimise production is no longer an option and oil 

companies invest hugely to ensure that continuous and real-time data from 

the wells are being transmitted from intelligent wells and sensors. Neural 

network learns from the data gathered and detects underlying 

relationships, and once this has been established the neural networks can 

be used for predictive data mining such as predicting sand production 

(Oberwinkler & Stundner, 2005) to prevent equipment from being damaged 

to avert production deferment. Early detection of the onset of sand 

production through the predictive data mining give operators ample time 

to cut-back production which effectively reduces the velocities of the 

abrasive sand particles. 

 Sand production prediction has traditionally been looked at the design 

stage by well and reservoir engineers in deciding as to the requirements of 

application of the appropriate sand control technology. In this respect, it 

belongs to the realm of the sub-surface engineering community. Rock 

mechanics is the theoretical and applied science of the mechanical 
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behaviour of rock and rock masses; it is that branch of mechanics 

concerned with the response of rock and rock masses to the force fields of 

their physical environment (Jaeger, Cook, and Zimmerman, 2009). 

 A predictive tool that forecasts the drawdown associated with the 

onset of sanding as well as it predicts the sanding rate in real time in which 

the model simulated the interaction between fluid flow and mechanical 

deformation of the medium in predicting sand production (Nouri, Vaziri, 

Belhaj, and Islam, 2004). 

 In  a recent work (Oluyemi, Oyeneyin, & Macleod, 2010), unconfined 

compressive strength (UCS) was identified as a key parameter required for 

the evaluation and analysis of sanding potential of any reservoir formation 

and the choice of neural network was due to its ability to better resolve the 

widely known complex relationship between petrophysical, textural and 

geo-mechanical strength parameters. Field-life sanding potential 

evaluation and analysis of reservoir formations throughout the life cycle of 

the well is therefore necessary so that important reservoir/field 

management decisions regarding sand control deployment can be made. 

The real-time functionality of the model data was assured by the real-time 

data gathering via logging while drilling (LWD) and other was measurement 

while drilling (MWD) tools. 

2.8 Performance Comparison of Sand Production Prediction Techniques 

When dealing with sand production, there are essentially two approaches 

that are adopted. A pro-active event-driven approach is to predict when 

the sand arch collapses causing formation sand to leave the wellbore into 

the tubing before it causes detrimental damage to the equipment on the 

surface facilities. The other approach is what follows after the sanding 

threshold has been surpassed, and formation sand is produced with the 

entrained fluid into the production facilities. The volumetric sand rate is of 

concern so as to ensure that the production separators are not filled with 
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sand and cause detrimental damage to equipment. Table 2-4 shows the 

limitations associated with sand quantification (Azad et al., 2011). 

Table 2-4: Two general approaches adopted with sand productions 

Approach Literature Benefit Limitations 

Onset 
Prediction: 
Predict the 
onset of sand 
production or 
sanding   

Risnes et al., 
1982; Morita, 
Whitfill, 
Fedde, et al., 
1989; Morita, 
Whitfill, 
Massie, et al., 
1989; Veeken 
et al., 1991; 
Weingarten 
and Perkins, 
1992; Kessler 
et al., 1993; 
Sanfilippo et 
al., 1995; 
Wang and 
Dusseault, 
1996. 

Reduce 
damages 
associated 
with sand 
production 

Simplicity of sanding 
criteria used in these 
models reduce their 
efficiency and accuracy 

Quantification: 
Quantify 
volumetric sand 
production in 
terms of rate 
and cumulative 
amount of 
produced sand 
after threshold 
of sanding is 
surpassed  

Papamichos 
and 
Malmanger, 
1999; 
Papamichos, 
2002; Vaziri et 
al., 2002; 
Willson et al., 
2002; Nouri et 
al., 2003, 
2004; Van 
den Hoek and 
Geilikman, 
2003, 2005.  

Ability to 
determine 
if sand 
production 
can be 
handled at 
the 
surface. 

 Decide on 
application 
of sand 
control.  

# Lack of dedicated 
sand production field 
data such as 

sand influx tests, 

discrepancies in 
production-related field 
data, 

experimental laboratory 
tests performed on 
relatively small samples. 

# uncertainty in the 
calculation of the 
cumulative amount and 
concentration of 
produced sand 

 # scarcity of data 
regarding the amount of 
produced sand 
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2.8.1 Review of Sand Production Prediction Models 

Most of these models are based on the continuum assumption, while a few 

have recently been developed based on discrete element model. Some 

models are only capable of assessing the conditions that lead to the onset 

of sanding, while others are capable of making volumetric predictions. 

Some models use analytical formulae, particularly those for estimating the 

onset of sanding while others use numerical models, particularly in 

calculating sanding rate. Although major improvements have been 

achieved in the past decade, sanding tools are still unable to predict the 

sand mass and the rate of sanding for all field problems in a reliable form. 

 The new DNV Recommended Practice O501 (DNV, 1999) provides 

valuable tools for dimensioning of piping systems and components, 

optimisation of production, and inspection and maintenance planning. The 

DNV erosion model calculates erosion rates using real time data such as 

sand signal, flow, temperature and pressure and additional information 

based on statistical and historical data. Data from both intrusive and non-

intrusive sand probes, depending on the principle of operation, has to be 

fed into a sand erosion prediction for sand and erosion rates to be 

calculated. 

 A predictive tool that forecasts the drawdown associated with the 

onset of sanding as well as it predicts the sanding rate in real time in which 

the model simulated the interaction between fluid flow and mechanical 

deformation of the medium in predicting sand production (Nouri et al., 

2004). 

 An intelligent sand management strategy (Oyeneyin, Macleod, 

Oluyemi, & Onukwu, 2005)  is a key enabler to reliable sand prediction. 

The work provided a straightforward way of integrating real-time data into 

a reservoir-management process, and its methodology implies how to gain 

value from the information provided by a continuous data stream. Sand 
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production could be a transient phenomenon, and needs to be given 

constant attention, to detect catastrophic downhole sand failures that 

would have adverse economic effects on the production of oil and gas. 

 Sand production prediction has traditionally been looked at the design 

stage by well and reservoir engineers in deciding as to the requirements of 

application of the appropriate sand control technology. In this respect, it 

belongs to the realm of the sub-surface engineering community. Rock 

mechanics is the theoretical and applied science of the mechanical 

behaviour of rock and rock masses; it is that branch of mechanics 

concerned with the response of rock and rock masses to the force fields of 

their physical environment (Jaeger et al., 2009). 

 Numerical models are by far the most powerful tools for predicting 

sand production. Numerical methods in the mechanical modeling are 

categorized under continuum, discontinuum and a combination of the two 

or hybrid approaches. Several mechanisms are recognized as responsible 

for sand production. They are mainly based on shear and tensile failure, 

critical pressure gradient, critical drawdown pressure, critical plastic strain, 

and erosion criteria (Rahmati et al., 2013).  

 Different models have used and are representative of the work that 

has been carried out to address the two general approaches to production 

of formation sand from the wellbore. Table 2-5 summarises the key 

benefits and limitations of the different techniques that have widely used 

(Khamehchi et al., 2014). 

Table 2-5: Benefits/limitations of techniques of sanding models 

Technique Literature Benefits Limitations 

Field 
observation 
Methods: 

One-
parameter, 
two-
parameter, 

(Nobuo Morita, 1994; 
Veeken, Davies, 
Kenter, and Kooijman, 
1991) 

Increase in the 
resolution of 
determining the 
possibility of 
sand 
production. 

Comprehensive 
field data 
required and 
may not 
respond in all 
cases. 
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Technique Literature Benefits Limitations 

and multi-
parameter 
correlations 
are three 
categories 

Physical 
model 
testing: 

(Nouri et al., 2006; 
Papamichos, Cerasi, 
and Stenebråten, 
2010; Rodrigues, 
Cobbold, and Løseth, 
2009; Vaziri, Phillips, 
and Hurley, 1997; 
Xiao and Vaziri, 2011) 

# Able to 
predict the 
onset of sand 
production. 

# Complicated 
models can 
quantify sand 
rates. 

# Time 
consuming and 
expensive.  

#Limitation of 
size of 
laboratories and 
results are 
influenced by 
boundary 
effects. 

 

Numerical 
methods:  

(Ashoori, Abdideh, 
Hayavi, and Branch, 
2014; Climent, 
Arroyo, Gens, and 
Sullivan, 2014; Han, 
2014; Ju, 2014; N 
Morita and Whitfill, 
1989; Solnordal, 
Wong, and Boulanger, 
2015; Wang, Wan, 
Settari, and Walters, 
2005) 

# Capability of 
handling 
complex 
situations with 
different 
boundary 
conditions, 
different 
constitutive 
laws and 
materials, and 
time-dependent 
parameters. 

# Models 
provide 
comprehensive 
tools for 
determining the 
impact of 
different factors 
in sanding to 
provide a 
deeper insight. 

# Powerful and 
exact 
approaches. 

# 
Computationally 
demanding and 
complexity in 
setting-up and 
running 
simulations, 
high costs and 
demands for 
input data that 
are not 
routinely 
measured. 

# Calibration of 
these models 
demands a 
complete series 
of laboratory 
experiments to 
increase the 
exactness of 
the methods. 

# Requires a 
complete set of 
data 
incorporating 
the massive 
experiments. 

Theoretical (Biot, 1941; Hoek et Simple and Less efficient 
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Technique Literature Benefits Limitations 

sanding 
onset 
prediction 
methods:  

al., 2000; Tengattini 
and Einav, 2015)  

easy-to-use 
and are the 
most beneficial 
methods for 
quick sand 
control decision 
is necessary. 

and accurate 
due to 
simplicity of 
sanding criteria. 

Analytical 
models: 

(Al-Shaaibi, Al-Ajmi, 
and Al-Wahaibi, 2013; 
Araujo Guerrero et al., 
2014; Hoek et al., 
2000; Horsrud, 
Risnes, and Bratli, 
1982; Jo and Gray, 
2010; N Morita, 
Whitfill, Fedde, and 
Levik, 1989; Ranjith, 
Perera, Perera, Wu, 
and Choi, 2013; 
Younessi, Rasouli, and 
Wu, 2013) 

Same set of 
governing 
equations. 

Models based 
on shear failure 
criteria and 
models based 
on tensile 
failure criteria. 

Single 
mechanism of 
sanding and 
under over-
simplified 
geometrical and 
boundary 
conditions of 
the actual 
complicated 
field-scale 
problems. 

Artificial 
Neural 
Networks: 

(Adibifard, 
Tabatabaei-Nejad, 
and Khodapanah, 
2014; Aifa, 2014; Aïfa, 
2014; Azad et al., 
2011; Chaki, Verma, 
Routray, Mohanty, 
and Jenamani, 2014; 
Irani and Nasimi, 
2011; Jahanandish, 
Salimifard, and 
Jalalifar, 2011; 
Kamari, Bahadori, 
Mohammadi, and 
Zendehboudi, 2014; 
Mazen Kanj and 
Abousleiman, 1999; 
MY Kanj and 
Roegiers, 1998; 
Khamehchi et al., 
2014; Oluyemi, 
Oyeneyin, and 
Macleod, 2010; 
Shokooh Saljooghi 
and Hezarkhani, 

# Easiness of 
analytical 
models and the 
exactness of 
numerical 
methods. 

# Reduced 
complexity and 
hardship 
accompanied 
by numerical 
methods.  

# Simplicity 
associated with 
analytical 
methods. 

# ANN can 
simulate highly 
non-linear 
functions and 
can be trained 
to accurately 
predict  new 

# Need for real, 
precise, and 
illustrative main 
parameters 
affecting sand 
as inputs to the 
network. 

# Possibility of 
getting trapped 
in local 
minimas, 
leading to 
unreliable 
predictions. 
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Technique Literature Benefits Limitations 

2015; YIlmaz and 
Yuksek, 2008) 

data.  

# Data-driven 
model and  
more flexibility 
for self-
adjustment to 
adapt various 
ranges of data. 

#Does not 
require any 
previous 
assumption 
about complex 
mechanical 
behavior of the 
rock and failure 
mechanisms. 

 

 From Table 2-5, the benefits of employing neural networks for the 

purposes of prediction of reservoir properties, sand production, etc far 

outweighs the limitations associated with the technique.  

2.8.2 Review of Neural Networks in Sand Production Predictions 

The notion of Artificial Neural Networks (ANN) first appeared in the work 

of McCulloch and Pitts (McCulloch and Pitts, 1943). As a psychiatrist, 

McCulloch developed logical representations of the nervous system. From 

biology, they concluded that difficult computational tasks could be 

performed with only simple structural components, known as neurons. For 

example, the human brain can perform complex information processing 

such as speech and pattern recognition much faster than ordinary serial 

computers. Since the brain's biochemical connections are a lot slower than 

the computer's electronic circuits, it must mean that a neural network such 

as the human brain is a nonlinear and parallel computer. A neuron consists 

of a cell that will process synaptic inputs and produce an output that in 

turn can be used as input to other neurons. Each neuron performs only the 



 

55 

 

simple task of a weighted summation of the inputs and outputs the sum 

transformed by an activation function. The interconnections between 

neurons, the synapses, are subject to modification through learning 

processes. Neural networks, both biological and artificial, adapts through 

learning processes. Through interaction with the environment, the neural 

network adapts its synaptic strengths to perform a specific task. This is 

referred to as learning. Various methods for learning have been proposed; 

the first from studies of the learning of biological neural networks. Hebb 

postulates what was later to be known as Hebbian learning, based on the 

observation that the connection between two neurons is strengthened if 

the two neurons are activated simultaneously (White, 1992). Many 

different structures of neural networks were developed in the following 

period, some more applicable to engineering problems than others. 

Associative memories and self-organizing maps are two examples. 

 A synopsis was written of the areas of petroleum technology in which 

neural networks have been used with success, and other potential areas of 

application including examples on seismic pattern recognition, permeability 

predictions, identification of sandstone lithofacies, drill bit diagnosis and 

analysis and improvement of gas well production (Ali, 1994). There is 

undeniably a learning curve of a purely practical nature, involved in 

understanding what neural networks are, its operations and their benefits. 

The synopsis reflects a practical focus on the application of neural networks 

in the petroleum industry. 

 A prototype feedforward neural net structure with five elements 

characterizing the particular well, its formation, and the reservoir namely; 

porosity, clay content, formation age and condition, oil API gravity and 

drawdown pressure to predict the tendency of the well to produce sand 

with a robust performance. The use of the neural approach to predicts 

sanding onset is a good example of the multi parameter correlations, 
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although establishing such correlations requires a comprehensive field data 

base (MY Kanj and Roegiers, 1998). 

 Feedforward back-propagation network (BPN) and the generalized 

regression neural network (GRNN) architectures to predict important 

sanding indication parameters for gas wells  was carried out using data 

available in the public domain data has been devised and validated (MY 

Kanj and Abousleiman, 1999). The neural network system took the 

following inputs for the wells; total vertical depth, transit time, formation 

cohesive strength, water and gas rates, drawdown pressure, original static 

reservoir pressure, effective overburden stress, interval length, and 

perforation density. 

 Feedforward back-propagation network (BPN) and the generalized 

regression neural network (GRNN) architectures to predict important 

sanding indication parameters for gas wells (Kanj & Abousleiman, 1999) 

was carried out using data available in the public domain data has been 

devised and validated. The neural network system took the following inputs 

for the wells; total vertical depth, transit time, formation cohesive strength, 

water and gas rates, drawdown pressure, original static reservoir pressure, 

effective overburden stress, interval length, and perforation density. 

 Accuracy of artificial neural network has been used to determine 

functional relationships between reservoir parameters and seismic data. 

The accuracy of ANN was carried by dimensionally reducing the input data 

and estimated by the k-fold estimation method (Aminzadeh, Barhen, 

Glover, and Toomarian, 2000). 

 Neural networks have been applied to obtain real-time and well-

specific grain-size distributions to improve gravel-pack design and achieve 

optimum sand control (Faga and Oyeneyin, 2000). Neural networks have 

been applied with success to predict grain-size distributions from well logs. 
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 An artificial neural network (ANN) has been developed as a tool to 

evaluate and optimize stimulation methods and to develop a prediction 

model for enhancing the production opportunities of the oil and gas 

(McNichol, Getzlaf, and Protz, 2001). It further re-iterates the point that 

although vast amount of data is available within the industry, the need to 

analyze data to enhance the ability to improve well economics and to 

predict well formation. 

 Modular artificial neural network system has been implemented 

successfully in predicting directly from well logs the partial saturation 

hydrocarbon fluids (oil, water, gas). Density, sonic, resistivity and neutron 

porosity logs were used as inputs with an optimal 4-4-1 Neural Network 

architecture (Helle and Bhatt, 2002). 

 Neural network learns from the data gathered and detects underlying 

relationships, and once this has been established the neural networks can 

be used for predictive data mining such as predicting sand production to 

prevent equipment from being damaged to avert production deferment 

(Oberwinkler and Stundner, 2004). Early detection of the onset of sand 

production through the predictive data mining give operators ample time 

to cut-back production which effectively reduces the velocities of the 

abrasive sand particles. 

 An intelligent sand management strategy is a key enabler to reliable 

sand prediction (Oyeneyin, Macleod, Oluyemi, and Onukwu, 2005). The 

work provided a straightforward way of integrating real-time data into a 

reservoir-management process, and its methodology implies how to gain 

value from the information provided by a continuous data stream. Sand 

production could be a transient phenomenon, and needs to be given the 

constant attention, to detect catastrophic sand failures in the well that 

would have adverse economic effects on the production of oil and gas.  
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 The need to optimise production is no longer an option and oil 

companies invest hugely to ensure that continuous and real-time data from 

the wells are being transmitted from intelligent wells and sensors.  

 Vast amount of data is readily available and the need to translate data 

into valuable and quality information to manage depleting oil and gas fields. 

The need to make value-of-information (VOI) analysis more accessible and 

useful by discussing its past, present, and future is highlighted and how 

such decision-making may be deployed in the oil and gas industry 

(Bratvold, Bickel, and Lohne, 2007). 

 A neural network system approach was adopted in assessing the 

probability of a casing collapse and the expected collapse depth for a field 

that have experienced severe casing collapses. The five input parameters 

to the neural net were latitude and longitude of the well, total depth of the 

well, corrosion weight factor, failure time factor and zone factor. It was 

seen an decision making tool in dictating which fields should be developed 

in the future (Salehi, Hareland, Dehkordi, Ganji, and Abdollahi, 2009). 

 Sand production in the entrained fluid is a natural consequence of 

fluid flow into a wellbore from the reservoir. For fields with high reservoir 

pressures, the onset of sand production is of little concern. However, the 

effect of sand transport on pressure drop becomes more pronounced in the 

late life of reservoir. A model was developed  that analysed the significant 

effect of sand on pressure drop during early and late life of a well that was 

not previously accurately predicted in existing models (Olufemi & 

Darlington, 2010). Poorly consolidated reservoirs are susceptible to sand 

production and tend to increase the pressure drawdown along the well 

length. It is difficult to measure flow rate for each phase along a wellbore 

for downhole condition, especially for real time applications. Instead, the 

measurable parameters such as downhole temperature and pressure are 

collected and are important information to help in the understanding of the 

bottom-hole flow condition. 
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 Unconfined compressive strength (UCS) was identified as a key 

parameter required for the evaluation and analysis of sanding potential of 

any reservoir formation and the choice of neural network was due to its 

ability to better resolve the widely known complex relationship between 

petrophysical, textural and geo-mechanical strength parameters (Oluyemi 

et al., 2010). Field-life sanding potential evaluation and analysis of 

reservoir formations throughout the life cycle of the well is therefore 

necessary so that important reservoir/field management decisions 

regarding sand control deployment can be made. The real-time 

functionality of the model data was assured by the real-time data gathering 

via logging while drilling (LWD) and other was measurement while drilling 

(MWD) tools. 

 Artificial neural networks were deployed to assess the strength of the 

intact rock that were under uni-axial tension to tri-axial compression by 

predicting the value of major principal stress at failure from uni-axial 

compressive stress and minor principal stress. Prediction errors were lower 

compared with empirical techniques and also were more flexible in the 

predicting major principal stress at failure in the brittle and ductile regimes 

(Rafiai and Jafari, 2011). 

 Artificial neural networks could be a technique could be used that has 

the added benefit of numerical and experimental methods in terms of the 

accuracy and the simplicity of analytical ones and has been used to predict 

critical bottomhole flowing pressure that prevent the onset of sand 

production. The main parameters that were responsible for causing sand 

production were investigated from field data. To simplify the model, only 

factors pertaining to production and reservoir characters, and formation 

and strength characters were considered while the completion characters 

were omitted. Inputs to the model included unconfined compressive 

strength, overburden and horizontal stresses, critical depths, transit time 

and reservoir pressure to predict a critical drawdown pressure The model 
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was subsequently evaluated against credible analytical models and it is 

reported that it has a high degree of accuracy in predicting the onset of 

sand production (Azad et al., 2011). 

 A neural network workflow, which provides a systematic approach for 

tackling various problems in reservoir engineering where an ANN model 

was developed for water saturation prediction in a petroleum field based 

on wireline logs. The ANN established the complex nonlinear relationship 

between wireline logs and core saturation data (Al-Bulushi, King, Blunt, 

and Kraaijveld, 2012). 

 A novel method using ANN was reported for sand production 

prediction. Sand prediction techniques based on field experiences rely on 

establishing a correlation between sand production well data and 

field/operational parameters. The immediate advantage of applying ANN 

as it eliminates the necessity of assumption about complex mechanical 

behaviour of the rock and failure mechanisms in order to construct reliable 

and accurate models. Subsequent study developed ANN in a three-stage 

process to simulate the complex relation between parameters critical total 

drawdown and all technical as an indication of the onset of sand 

production. The technical parameters identified were total vertical depth, 

effective overburden vertical stress, transit time and cohesive strength. 

(Khamehchi et al., 2014).  

 Porosity is one of the most important parameters of the hydrocarbon 

reservoirs, the accurate knowledge of which allows petroleum engineers to 

have adequate tools to evaluate and minimize the risk and uncertainty in 

the exploration and production of oil and gas reservoirs. Applying an 

efficient method that can model porosity is important and ANN has been 

explored in this field. Changes in relative permeability or weakening of the 

overall strength of the rock as a result of water flow into the hydrocarbon 

bearing rocks may cause chemical interactions to occur between water and 

rock cementation and may affect the sand production (Aïfa, 2014). 
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 In a recent comprehensive study on sand production, a practical sand 

production model was developed to estimate amount and rate of sand 

produced was conducted. In the study, a sand production quantification 

model was developed by correlating the critical plastic volume obtained 

from the numerical modelling with the cumulative amount of sand 

produced from sanding experiments. It was found that in weakly-

consolidated and consolidated sandstones, sanding rate decreased rapidly 

with time and would cease once the failed materials transportable by fluid 

flow had been produced under given drawdown and stress condition (Wu 

et al., 2016). 

 In a recent study, least square support machine (LSSVM) classification 

approach was published as a novel technique and was applied to identify 

the conditions under which sand production occurs. The model used the 

following parameters; true vertical depth, transmit time, cohesive strength 

of the formation, water and gas flow rates, bottom hole flowing pressure, 

drawdown pressure, effective overburden stress, shut per foot, and the 

perforation interval. A mathematical non-linear relationship between the 

available data considered as the input parameters and the output was an 

indication that sanding production may occur (Gharagheizi, Mohammadi, 

Arabloo, and Shokrollahi, 2016). 

2.9 Summary 

The chapter looked at single and multiphase flow and more specifically at 

sand erosion in multiphase flow and the use CFD's in modelling of flow 

profiles. It reviews the equipment and measurement technologies that 

have been employed in industry for the monitoring and detection of sand 

production that is caused by formation sand in the reservoir. It looks at the 

traditional and more conservative methods in the prediction of sand 

production from an oil and gas reservoir. It also gives an overview of the 

research activities that have taken place in the industry. A review of the 
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various techniques was highlighted of current technologies based on 

physical measurement of the corrosive and erosive effects of sand. An 

understanding of rock properties is important to appreciate the underlying 

of critical drawdown pressure and the stability of sand arches in the 

mechanics of sand production. Prediction techniques of sand production 

based on the assumptions made around the parameters associated with 

rock mechanics taking into account the sanding criteria for sand to be 

produced from the reservoir. Various sand prediction tools are reviewed in 

the literature and their performance are compared. The chapter concludes 

with the benefits of neural network-based sand prediction techniques that 

are not based on rock mechanics parameters and their many assumptions.  

  These technologies are deployed in a reactive manner at best but 

more importantly, it requires manual human intervention of the oil and gas 

wells that have experienced the onset of sand co-production. There is an 

economical consequence, as these wells need to be shutdown to prevent 

further damage to the flowlines and their associated flow path components. 

In the event that the instrumentation fails to detect sand, these wells will 

continue to produce causing detrimental damage that could result in injury 

to personnel who are not aware of the hazard. As a result, there is a 

potential loss of life (PLL) or multiple injuries. It is therefore, expedient 

that industry take a more proactive approach to monitoring sand 

production in a more proactive and predictable manner so as to avert 

production deferment from an economic standpoint, and to avoid 

catastrophic failures of sand detectors that could potentially injure or take 

the lives of personnel working in these facilities. 
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CHAPTER 3 
 

RESEARCH METHODOLOGY & MATERIALS 
 

3.1 Introduction 

Most oil and gas wells have measurements of process parameters such as 

flow and pressure and complex non-linear equations represent the 

relational change amongst these parameters. The resultant change 

amongst these parameters indicates the production of formation sand 

entrained in the production fluids from a particular oil or gas well and will 

cause sand to be produced or a phenomenon more commonly known as 

sand production. Sand production has caused detrimental damage to 

equipment in the oil and gas industry. Sand monitoring devices installed at 

strategic locations on oil and gas flowlines enable monitoring of the onset 

of sand production. Due to the highly complex nature of an oil and gas 

well, and the uncertainties associated with these parameters, the field of 

artificial intelligence has been successfully employed in the prediction of 

sand production (Oluyemi et al., 2010). The use of artificial neural networks 

(ANN) in particular has shown accurate predictions with a high level of 

confidence. The results from the predictions drive important decision as to 

reduce the flow of the well by "beaning-back" the well. The more severe 

cases require that the well be completely closed in. The reduction in flow 

of an oil and gas well has drastic economic repercussions. A decision tool 

that can help substantiate in this critical decision-making process is highly 

invaluable from a business perspective. These process parameters together 

with a sand monitoring system provide the basis of measurements in 

realizing a neural network-based sand prediction tool. 
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The overall research philosophy is depicted in Figure 3-1. 

 

Figure 3-1: Overall Methodology – Relevant Phases within Red Dotted Lines, 
and without the Execute Phase 

3.2 Identify Phase 

3.2.1 Identify Area of Increasing Challenges 

The issues and challenges facing the oil and gas industry are wide and 

varied and an area that has been economically impacted is production 

deferment. Continuous oil and gas production will be heavily interrupted 

due to reliability of compressors, erosion of valves, corrosion of production 

tubings, etc. However, an area where production deferment of oil and gas 

production is an increasing challenge to the industry is the interruption to 

continual and safe production that is attributed to sand. It continues to be 

a challenge due to the uncertainties associated with the reservoir of an oil 

and gas field. Sand production is a result of the collapse of the sand arches. 

The ability to predict these underlying causes of sand production by 
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addressing the effects on the flowing bottomhole pressure and the 

detection of sand by implementing suitable sand measurement 

technologies contributes towards averting the production deferment. The 

challenges and approaches in developing the research philosophy is 

summarised in Table 3-1 below. 

Table 3-1: Identify - Approaches to Sand Production Prediction 

Item Description of Item 

Causes Effective stresses in the reservoir contributes towards 
the collapse of sand arches causing sand to be 
produced at the surface.  

Effects Flowing bottomhole pressure or the wellbore pressure 
drops and hence, causing the critical flowing 
bottomhole pressure (CFBHP) to be reached. 

Challenge 
#1 

Measurement of CFBHP is not readily available. 

Approach Derive drawdown from correlated measurement at the 
surface from available process parameters.  

Challenge 
#2 

 

Various measurement technologies for the monitoring 
of sand production is available but are reactive in 
nature, and by then equipment damage would have 
occurred 

Approach Adopt a suitable measurement technology and assess 
the suitability for the installation of the sand probe on 
the flowline 

3.3 Assess Phase 

3.3.1 Literature Review 

Having identified the underlying causes for sand production, the literature 

is reviewed in the terms of the drawdown aspects for a specific reservoir. 

The attributes of porosity and permeability of rocks in the reservoir 

contributes largely to the flow of hydrocarbon fluids towards the wellbore. 

At the perforations, formation sand in the reservoir gradually builds up to 

form a sand arch as hydrocarbons flow into the porous medium. With an 

increase in the stresses and strains in the reservoir, the stable sand arch 
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will gradually collapse at an unknown time. Upon collapse of the sand arch, 

disaggregated sand flows through the perforations. Depending on the 

depth of the perforating zones, the hydrostatic head of the wellbore needs 

to be exceeded for formation sand to reach the surface at the wellhead. 

Suitable measurement technologies will detect the sand on the surface. 

Operator intervention would be required to reduce the flow of the well. The 

effect of reducing the production flow is to increase the flowing bottomhole 

pressure (FBHP) which invariably causes the drawdown to reduce. Different 

sand prediction technologies and techniques are reviewed for the suitability 

of a sand production prediction system. The gaps are assessed for a reliable 

prediction system to be realised and how these gaps can be addressed. 

The literature review structure is shown in Table 3-2. 

Table 3-2: Assess - Structure of Literature Review 

Review Description of Review 

Drawdown Production of oil and gas is a result of drawdown 
which is the differential pressure between the 
reservoir and the wellbore, for rocks of a given 
porosity and permeability. 

Effect of 
Formation 
Sand 

Formation sand gradually builds a sand arch near the 
wellbore as oil flows through the porous medium. 

Collapse of 

Sand Arch 

 

As a result of the increase in stresses and strains in 
the reservoir, the sand arch collapses and the 
disaggregated sand flows through the perforations. 

Sand 

Transport 

 

Sand is transported to the surface if it can overcome 

the hydrostatic head of the wellbore. 

Sand 

Detection 

 

When sand is detected at the surface, the well is 

beaned back so as to reduce the flow, such that the 
FBHP increases, causing drawdown to reduce. 

Sand 
prediction 
system  

Reliability of a prediction system for the onset of sand 
production. 

Assess gaps Findings tabulated and gaps are assessed. 
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3.4 Select Phase 

3.4.1 Gaps Selected 

Based on the literature survey, there was no reported work on the 

prediction of sand production from an oil and gas well based on process 

measurements on the surface facilities. Furthermore, rigorous modeling 

efforts have been carried out on the prediction of sand during the design 

of an oil and gas well. It is appreciated that this is an important aspect of 

addressing the inherent uncertainties of a reservoir. However, once the 

well is in its production phase, there were efforts carried out to model the 

well with parameters based on the reservoir properties. Efforts in model 

building for sand production prediction in these areas suffer from the 

assumptions made of these parameters of reservoir properties. The 

uncertainties attributed to change in reservoir temperature, change in rock 

properties due to increase in mechanical stresses and strains, etc will affect 

these mechanistic models. On the other hand, data-driven models using 

real-time production data do not suffer from those that are based on rock 

mechanics. 

3.4.2 Hypothesis Formulation 

In the literature reviewed, the approach undertaken in this Thesis was not 

reported in any other work to date. There is an anticipated relationship 

amongst the variables from the correlation of process measurements at the 

surface at the wellhead and flowlines of oil and gas wells and the critical 

flowing bottom hole pressure (CFBHP). This has a direct relationship with 

the drawdown of the well. 

 An increase in the drawdown of the well will cause disaggregated sand 

due to untimely collapse of the sand arch to flow to the surface. 

Disaggregated sand in the entrained fluid will into the flowlines. Sand 

probes installed in suitable and correct locations along the flowlines will 
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detect sand in the entrained fluid. The hypothesis is that from the 

correlations amongst the process measurements at the wellhead, an 

artificial neural network can predict the onset of sand production in the 

well bore.  

3.4.3 Variables 

The presence of variables other than the independent variables will 

significantly contribute to the causes in predicting the dependent variable. 

Moreover, the presence or absence of the intervening variable can affect 

the reliability of the outcome as depicted in Figure 3-2. 

Independent 
Variables, IV

Intervening 
Variables, ITV

Extraneous 
Variable, EV

Control 
Variable, CV

Moderator 
Variable, MV

Dependent 
Variable, DV

CAUSES

EFFECT

INTERMEDIATE 
EFFECT

 

Figure 3-2: Intervening variables affecting the dependent variable 

 The hypothesis is made testable by providing operational definitions 

for the variables of the hypothesis in Table 3-3. 

Table 3-3: Operarional Definitions for the variables identified 

Variable Measurements Operational Definitions 

Independent 

variable (IV): 
Process Parameters: 

 

Production of oil and gas is 

a result of drawdown which 
is the differential pressure 
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Variable Measurements Operational Definitions 

between the reservoir and 
the wellbore, for rocks of a 
given porosity and 
permeability. 

Control Variable 

(CV): 

Reservoir/Pore 

Pressure 

Formation damage causing 
formation sand to gradually 
builds a sand arch near the 
wellbore as oil flows 
through the porous 
medium. 

Extraneous 
Variable (EV):  

Stresses/Strains 

 

Increase in stresses and 
strains in the reservoir 
causes the sand arch to 
collapse and the 
disaggregated sand flows 
through the perforations. 

Moderator 

Variable (MV):  
FBHP/Well Pressure 

 

Sand flows to the surface if 
it can overcome the 
hydrostatic head of the 
wellbore. 

Intervening 
Variable (IVT):  

Rock mechanics 
parameters 

COH 

 

Uncontrolled disturbances in 
the rock structure. 

Dependent 

Variable (DV):  

 

Sand Sand erosion depletes the 
sensing elements causing 
metal loss of a sand erosion 
probe. Whenever sand is 
detected at the surface, the 
well is beaned-back to 
reduce the flow. The FBHP 
will increase and cause 
drawdown to reduce. 

 It was necessary to extract datasets of the dependent variable from 

historical records of episodes of sand erosion of the onset of the production 

of formation sand. Subsequently, the corresponding datasets of the 

independent variables were extracted from historical records of 

measurements of process parameters covering the same period when these 

sand erosion episodes occurred. These corresponding datasets will 



 

70 

 

establish if a correlation exists between sand erosion/corrosion and 

measurements of the process parameters. 

3.5 Define Phase 

3.5.1 Equipment and Materials 

In order to obtain the sand measurements from a remote offshore location, 

a communication infrastructure needs to be in place. This was to ensure 

that real-time sand measurement is continuously available for the model. 

Data from the sand probe is stored on the sand logger that is an integral 

part of the sand probe assembly. The sand logger is connected to the field 

junction box and data is sent to the field interface unit (FIU) that is located 

in a non-hazardous area. Depending on the oil and gas platform's 

communications system, data will be sent through the distributed control 

system (DCS), remote telemetry unit (RTU) or a modem to the onshore 

sand monitoring system server. 

 Information is then sent to the Plant Information (PI) System that 

populates the historical database. Historical data from PI will be used to 

build the artificial neural network model. The block diagram of the 

communication infrastructure is shown in Figure 3-3. Every component 

along the communication path is monitored to ensure that the system is 

healthy as indicated by the green boxes. 
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Figure 3-3: Communication flow of sand measurement into the ANN-based 
Sand Prediction System 

3.5.2 Candidate well 

The candidate wells were selected based on its historical events of the 

onset of sand production that have caused detrimental damage to 

equipment or flowlines. Sand erosion has predominantly caused damage to 

gas wells rather than oil wells. This is partly due to the higher velocities 

associated with gas wells. The selection is also based on level of real-time 

instrumentation that has been installed on the well and the facilities.  

3.5.3 Sampling Rate 

Erosion is a slow and intermittent process, and the sampling period needs 

to be determined based on typically between one and two hours. If the 

sampling period is too frequent, then there will be too much data without 

any significant change. On the other hand, if the sampling period is less 

frequent, then a short episode of sand erosion may not be recorded. 

3.5.4 Process Measurements 

Process parameters of the selected variables need to be measured by 

suitable and certified process transmitters that are suitable for the oil and 
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gas industry. These transmitters are typically connected on the Wellhead 

and Christmas Tree Equipment. Pressure gauges are visible for pressure 

monitoring. However, real-time measurements are required to be 

continuously fed into a supervisory control and data acquisition (SCADA) 

system. 

 The flowchart may be depicted as in Figure 3-4  for the conceptual 

aspect of the methodology. 

 

Figure 3-4: Flow Chart of the Methodology - Conceptual 
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3.6 Summary 

In this chapter, the key areas of challenges in the prediction of sand 

production are identified in terms of the drawdown aspects for a specific 

reservoir. Based on the literature survey gaps are selected for the research 

and a hypothesis is formulated on the anticipated relationship amongst the 

different process variables and the onset of sand production. In order to 

obtain data from a particular well, a data communication infrastructure for 

a data-acquisition system needs to be realised to provide real-time process 

parameters and sand production data. A sampling rate is determined based 

on the on the historical data available for a specific candidate well. Process 

measurements from instrumentation from a typical well are recorded and 

provides the historical information that is required to build a neural 

network-based sand production prediction model. The thesis has 

formulated the hypothesis that the onset of sand production can be 

predicted by a neural network model based on the combination of the 

measurement of process parameters at the wellhead of a typical oil and 

gas well. The operational definitions for the identified variables are 

qualified, while the intervening variable(s) with intermediate effects can 

significantly affect the accuracy and reliability of the prediction.  
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CHAPTER 4 
 

PROPOSED ALGORITHM  
AND DEVELOPMENT 

 

4.1 Introduction 

It is expedient that there is a suitable dataset of sufficient size and 

excitation for neural networks to be adequately trained. Data pre-

processing play an important role on any given dataset. Depending on the 

availability of the data, there is the option of dividing the dataset for 

training, validation and test subsets. In order to obtain the optimum 

performance of the neural network, it is necessary that the network be 

trained by a dataset of optimum size. This will also ensure that the time 

taken to train the network is optimised. 

 Neural network training is made more efficient when pre-processing 

steps are performed on the network inputs and targets. Data obtained from 

instrumentation in real time will have instances of outliers. There will be 

instances of unreliable communications that give zero values, and these 

undesirable data needs to be processed. In some cases, there will be slight 

changes in the data, and it is prudent to capture information that is suitable 

for the neural network. 

4.2 Execute Phase 

In the execute phase, the algorithm is developed and described to realise 

a sand prediction system. The pre-processed data was further reduced due 

to their high correlation. The model was selected with neural network 

architecture defined. The testing of the model and the approach to validate 

the model were defined to ensure that the model can be improved to 

overcome overfitting. This is shown in the last stage of the overall 

methodology in Figure 4-1. 
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Figure 4-1: Overall Methodology - Execute Phase to Develop the Algorithm 

4.2.1 Proposed Algorithm and Description 

The process parameters were flow and pressure measurements for a well 

and these parameters were highly correlated. Hence, the main principal 

components that are orthogonal to one another will be extracted from the 

data using principal component analysis. The coefficients of the principal 

components were used to determine and select process variables that 

largely contributed to the data.  

 Based on the hypothesis formulation in the previous chapter, a 

relationship between the critical flowing bottomhole pressure (CFBHP) and 

the selected variables will be established. This is associated with the 

drawdown of the well and invariably contributes towards the production of 

sand. Given the uncertainties that give rise to the production of sand, any 

model representing the process will be highly non-linear. Regression 

analysis that is typically used in linear systems was used to exhibit the 

highly non-linear nature of the process of the production of sand in the 
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entrained fluids during the normal production of oil and gas from the 

reservoir. Principal component regression (PCR) and partial least squares 

regression were both employed to test for correlation. A suitable neural 

network was employed to establish the non-linear relationship. 

 It is not sufficient that the error margin be small in prediction, but it 

is also important that the predictions fall within an acceptable level of 

confidence. Statistically, a 95% level of confidence is generally accepted 

and was adopted in the validation of the prediction. Overfitting is a 

phenomenon whereby a neural network has memorised the data and it is 

not able to perform when introduced with new data. A neural network-

based auto-regressive with exogenous inputs (NNARX) will typically have 

past inputs and outputs that are fed into the regression vector. With only 

three to four input variables, the regression vector with four past inputs 

[e.g., u(t-1),……u(t-4)] and four past outputs [e.g., y(t-1),……y(t-4)], the 

NNARX model would be required to accommodate 16 inputs to 20 inputs, 

respectively. Therefore, in order to overcome the overfitting issue, pruning 

was deployed to reduce the number of weights connecting to and from the 

neurons in the hidden layer. The approach adopted is shown in Table 4-1 

below. 

Table 4-1: Algorithm Development 

Approach Description of Approach 

1 Since the measurements were highly correlated, apply 
principal component analysis. 

2 Carry out a correlation between the derived drawdown 
from the process measurements and the sand erosion 
loss to indicate the onset of sand production. 

3 Carry out regression analysis to describe the correlations 
between the variables and a neural network was 
employed. 

4 Deploy a Neural Network-based auto-regressive with 
exogenous inputs (NNARX) model to establish a 
correlation. 
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Approach Description of Approach 

5 Determine the number of regressors in the NNARX 
structure for the past inputs and past outputs based on 
the Lipschitz Quotient. 

6 Determine the number of neurons in the hidden layer are 
based on rules of  thumb i.e., size of input layer, 2x's size 
of input layer, etc 

7 Employ pruning was employed to improve the 
performance of the prediction within the 95% confidence 
limit. 

The proposed algorithm is depicted as in Figure 4-2. 

 

Figure 4-2: Flow Chart of the Methodology - Execute 



 

78 

 

4.3 Principal Component Analysis 

In some situations, the dimension of the input vector is not necessarily 

large, but the components of the vectors are highly correlated or 

redundant. It is useful in this situation to reduce the dimension of the input 

vectors. An effective procedure for performing this operation can be 

realized by applying principal component analysis (PCA) (Bishop, 1995). 

The technique orthogonalizes the components of the input vectors so that 

they are uncorrelated with each other. It orders the resulting orthogonal 

components (i.e., principal components) so that those with the largest 

variation come first. It eliminates those components that contribute the 

least to the variation in the data set. 

 With multivariate statistics, the problem of visualizing data and their 

relationships that has more than three variables becomes a problem (The 

MathWorks, 2013). However, in datasets with many variables, groups of 

variables often move together and the reason for this is that more than 

one variable might be measuring the same driving principle governing the 

behaviour of the system. In many systems, there are only a few such 

driving forces, but measurement of various system variables can be easily 

realised with readily available instrumentation. With the redundancy of 

information, measurement of a large group of variables can be replaced 

with a smaller group of new variables. 

 PCA is a quantitatively rigorous method for achieving this 

simplification (Jolliffe, 2002). The method generates a new set of variables, 

called principal components. Each principal component is a linear 

combination of the original variables. All the principal components are 

orthogonal to each other, so there is no redundant information. The 

principal components as a whole form an orthogonal basis for the space of 

the data. The first principal component is a single axis in space. Upon 

projecting each observation on that axis, the resulting values form a new 

variable. However, the variance of this variable is the maximum among all 
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possible choices of the first axis. The second principal component is 

another axis in space, perpendicular to the first. Likewise, projecting the 

observations on this axis generates another new variable, and the variance 

of this variable is the maximum among all possible choices of this second 

axis. The full set of principal components is as large as the original set of 

variables. Usually, the sum of the variances of the first few principal 

components would exceed 80% of the total variance of the original data 

(Jolliffe, 2002). By examining plots of these few new variables, a deeper 

and better understanding of the driving forces that generated the original 

data may be attained. 

4.3.1 Orthogonality of variables 

Although a dataset is not large, potential improvements can be achieved 

by first mapping the data into a space of lower dimensionality. In general, 

a reduction in the dimensionality of the input space will be accompanied 

by a loss of some of the information, which discriminates between different 

classes (Bishop, 1995). The goal in dimensionality reduction is therefore, 

to preserve as much of the relevant information as possible. Another 

approach to dimensionality reduction is based on the selection of a subset 

of a given set of features or inputs known as feature selection. However, 

the principal component analysis technique involves feature 

transformations where inputs are combined, without reference to a 

corresponding target data, to make a set of features. 

 The goal of PCA is to map vectors 𝑧𝑛 in a d-dimensional space 

(𝑥1, … . . , 𝑥𝑑) onto vectors 𝐳𝐧 in an M-dimensional space (𝑧1, … . . , 𝑧𝑀) where 

M < d (Bishop, 1995). The vector 𝑥 can be represented, without loss of 

generality, as a linear combination of a set of orthonormal vectors 𝑢𝑖 such 

that, 

𝑥 =  ∑𝑧𝑖

𝑑

𝑖=1

𝑢𝑖 (4-1) 
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where the vectors 𝐮𝐢 satisfy the orthonormality relation in which 𝛅𝐢𝐣 is the 

Kronecker delta symbol, defined as 𝛅𝐢𝐣 = 𝟏 if 𝐢 = 𝐣 and 𝛅𝐢𝐣 = 𝟎, as in equation 

(4-2), 

𝑢𝑖
𝑇 𝑢𝑗 = 𝛿𝑖𝑗 (4-2) 

Explicit expressions for the coefficients 𝐳𝐢  in equation (4-1) can be found 

by using equation (4-2) to give equation (4-3) 

𝑧𝑖 = 𝑢𝑖
𝑇𝑥 (4-3) 

which can be regarded as a simple rotation of the coordinate system from 

the original 𝐱′𝐬 to a new set of coordinates given by the 𝐳′𝐬. If only a subset 

M < d of the basis vectors 𝑢𝑖 are retained such that only M coefficients of 

𝐳𝐢 are used, the remaining coefficients will be replaced by constants 𝑏𝑖 so 

that each vector 𝑥 is approximated by an expression of the form shown in 

equation (4-4) 

𝑥̃ =  ∑ 𝑧𝑖

𝑀

𝑖=1 

𝑢𝑖 + ∑ 𝑏𝑖

𝑑

𝑖=𝑀+1

𝑢𝑖 (4-4) 

A form of dimensionality reduction has taken place since the vector 𝑥 which 

originally contained 𝐝 degrees of freedom must now be approximated by a 

new vector 𝐳 which has 𝐌 degrees (𝐌 < 𝐱) of freedom. Considering a 

dataset of 𝑁 vectors, 𝐱𝐧  where 𝐧 = 𝟏,… . 𝐍. The basis vectors 𝐮𝐢 and the 

coefficients 𝐛𝐢 are chosen such that the approximation given by equation 

(4-4) with the values of 𝐳𝐢 determined by equation (4-3) gives the best 

approximation to the original vector 𝐱 on average for the whole data set.  

 The error in the vector 𝐱𝐧 introduced by the dimensionality reduction 

is given by equation (4-5), 

𝑥𝑛 − 𝑥̃𝑛 = ∑ (𝑧𝑖
𝑛 − 𝑏𝑖)

𝑑

𝑖=𝑀+1

𝑢𝑖 (4-5) 
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 The best approximation is defined to be that which minimizes the sum 

of the squares of the errors (SSE) over the whole dataset which may be 

written as, 

𝐸𝑀 = 
1

2
∑‖𝑥𝑛 − 𝑥̃𝑛‖2

𝑁

𝑛=1

=
1

2
∑ ∑ (𝑧𝑖

𝑛 − 𝑏𝑖)
2

𝑑

𝑖=𝑀+1

𝑁

𝑛=1

 (4-6) 

where the orthonormality relation of equation (4-7) is being used. Setting 

the derivative of 𝐸𝑀 with respect to 𝑏𝑖 = 0, yields, 

𝑏𝑖 = 
1

𝑁
∑ 𝑧𝑖

𝑛 = 𝑢𝑖
𝑇

𝑁

𝑛=1

𝑥̅ (4-7) 

where the mean vector 𝑥̅ is defined as, 

𝑥 ̅ =
1

𝑁
∑ 𝑥𝑛

𝑁

𝑛=1

 (4-8) 

Using equations (4-3) and (4-7), the sum-of-squares error (SSE) can be 

written as equation (4-9), 

𝐸𝑀                 =      
1

2
∑ ∑{𝑢𝑖

𝑇(𝑥𝑛 − 𝑥̅)}2  =
1

2
∑ 𝑢𝑖

𝑇

𝑑

𝑖=𝑀+1

𝛱𝑢𝑖

𝑁

𝑛=1

𝑑

𝑖=𝑀+1

  
(4-9) 

where 𝚷 is the covariance matrix of the set of vectors 𝐱𝐧 and is given in 

equation (4-10), 

𝛱 =  ∑(𝑥𝑛 − 𝑥̅)(𝑥𝑛 − 𝑥̅)𝑇

𝑛

 (4-10) 

Minimizing 𝚷 in equation (4-10) with respect to the choice of basis vectors 

𝐮𝐢 it can be shown that the minimum occurs when the basis vectors satisfy 

equation (4-11), 

∑

𝑢𝑖

= 𝜆𝑖𝑢𝑖 (4-11) 

so that they are the eigenvectors of the covariance matrix. Since the 

covariance matrix is real and symmetric, its eigenvectors can indeed be 
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chosen to be orthonormal as assumed. The value of the error criterion at 

the minimum can be obtained as, 

𝐸𝑀 = 
1

2
∑ 𝜆𝑖

𝑑

𝑖=𝑀+1

 (4-12) 

Thus, the minimum error is obtained by choosing the 𝐝—𝐌 smallest 

eigenvalues, and their corresponding eigenvectors, as the ones to be 

discarded. 

 The linear dimensionality reduction procedure derived above is called 

the Karhunen-Loeve transformation and is discussed at length in (Jolliffe, 

2002). Each of the eigenvectors 𝑢𝑖 is called a principal component. The 

error introduced by a dimensionality reduction using principal component 

analysis can be evaluated using equation (4-12). In some applications, the 

original data has a very high dimensionality and only the first few principal 

components are retained. In such cases, use can be made of efficient 

algorithms that allow only the required eigenvectors, corresponding to the 

largest few eigenvalues, to be evaluated. 

4.3.2 Regression Analysis 

Regression analysis is a statistical process for estimating the relationships 

among variables including techniques for modeling and analysing several 

variables. The focus is on the relationship between a dependent 

variable (DV) and one or more independent variables (IV). More 

specifically, regression analysis looks at how the dependent variable 

changes when any independent variable is varied, while the other 

independent variables are fixed. Regression analysis is widely used 

for prediction and forecasting, where its use has substantial overlap with 

the field of artificial intelligence. Regression analysis is also used to 

understand which amongst the independent variables are related to the 

dependent variable, and to explore the forms of these relationships.  
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 Two techniques of regressions namely, principal component 

regression (PCR) and Partial Least Squares Regression (PLSR) were 

employed to select suitable inputs to be fed into the neural network based 

on the number of principal components identified. Both methods construct 

new predictor variables, and hence, the use of the term components, which 

essentially are linear combinations of the original predictor variables, but 

are, constructed orthogonally in different ways. PCR is a regression 

analysis that uses principal component analysis when estimating 

regression coefficients. In PCR, the dependent variable is regressed on a 

subset of the principal components of the independent variables and 

effectively imposing some form of regularization. In the case with neural 

networks, regularization is introduced in the form of a penalty to prevent 

over fitting. Only the principal components with the highest variance are 

selected, but not discrediting the ones of lower variance depending on the 

parsimony of the model. PCR creates components to explain the observed 

variability in the predictor variables, without giving due consideration to 

the response variable. On the other hand, PLSR models a response variable 

when there are a number of predictor variables that are highly correlated 

or even collinear. PLSR take the response variable into account, and 

therefore often leads to models that are able to fit the response variable 

with fewer components. 

 Cross-validation is a statistically sound method for choosing the 

number of components in PLSR or PCR (Mevik and Cederkvist, 2004). It 

avoids overfitting data by not reusing the same data to both fit a model 

and to estimate the mean squared prediction error (MSPE) and the error is 

not biased.  

4.4 Maximal Information Coefficient 

Maximal information coefficient (MIC) is a technique that measures of the 

strength of the linear or non-linear association between two variables. The 
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MIC belongs to the maximal information-based nonparametric exploration 

(MINE) of data analysis. It is a class of statistics and identifies pair-wise 

associations for further analysis while filtering out weaker ones. The 

measure of dependence on all possible variable pairs is computed and the 

highest-scoring pairs are examined (D. N. Reshef, Reshef, and May, 2015).  

Events or measurements are termed probabilistically independent if they 

do not contribute to the probabilities of the others. By convention, any 

measure of association, referred to as measures of dependence between 

two variables must be zero if the variables are independent.  

 The entropy of a single random variable that is a fundamental role in 

information theory provides the basis of mutual information, MI, of a pair 

of random variables. Mutual information seems to solve the problem of 

equitably quantifying statistical associations between pairs of variables. 

Unfortunately, reliably estimating mutual information from finite 

continuous data remains a significant and unresolved problem (Kinney and 

Atwal, 2014). Improved estimators for mutual information from samples of 

random points distributed according to some joint probability density based 

on entropy estimates from k-nearest neighbour distances have been 

employed (Kraskov, Stogbauer, and Grassberger, 2004). 

 For two continuous random variables 𝑋 and 𝑌  whose joint probability 

distribution is 𝑝(𝑥, 𝑦), and 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability 

density functions of 𝑋 and 𝑌 respectively, the mutual information between 

them, denoted by 𝐼(𝑋; 𝑌)  

𝐼[𝑋; 𝑌] =  ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

𝑌

𝑑𝑥𝑑𝑦
𝑋

 (4-13) 

Mutual information can be equivalently expressed as 

𝐼[𝑋; 𝑌] =  𝐻(𝑋)–  𝐻(𝑋|𝑌) 
              =  𝐻(𝑌)–  𝐻(𝑌|𝑋) 

                               =  𝐻(𝑋)–  𝐻(𝑌) −  𝐻(𝑋|𝑌) 
                                       =  𝐻(𝑋, 𝑌)–  𝐻(𝑋|𝑌) − 𝐻(𝑌|𝑋) 

(4-14) 
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where 𝐻(𝑋) and 𝐻(𝑌) are the marginal entropies, 𝐻(𝑋|𝑌) and 𝐻(𝑌|𝑋) are 

the conditional entropies, and 𝐻(𝑋, 𝑌) is the joint entropy of 𝑋 and 𝑌.  

 It can be shown from (4-13) and (4-14), 𝐼(𝑋; 𝑌) is non-negative and 

consequently, 𝐻(𝑋) ≥ 𝐻(𝑋|𝑌) using Jensen's Operator Inequality based on 

the definition of Mutual information (Hansen and Pedersen, 2003). 

 MIC is a univariate method that is based on the information entropy 

concept  and can detect all forms of associations between any pair of 

variables (pairwise relationship ((Simon and Tibshirani, 2011). The 

maximal information coefficient uses a methodology of binning by selecting 

the number of bins and picking a maximum over many possible grids as a 

means to apply mutual information on continuous random variables. Bins 

for both variables should be selected in such a way that the mutual 

information between the variables be maximal whenever, 

𝐻(𝑋𝑏) =  𝐻(𝑌𝑏)–  𝐻(𝑋𝑏, 𝑌𝑏) (4-15) 

For a dataset 𝐷 containing 𝑛 observations on two variables 𝑋 and 𝑌, the 

values in 𝑋 and 𝑌 can be partitioned into 𝑥-bins and 𝑦-bins, respectively, 

to create 𝑥 by 𝑦 grid (D. Reshef, Reshef, Mitzenmacher, and Sabeti, 2013) . 

Let 𝐷|𝐺 be the distribution of observations in 𝐷 on the cells of a certain 

gird 𝐺, and 𝐼 (𝐷|𝐺) denotes the mutual information of 𝐷|𝐺. For a fixed 𝐷, 

different grids 𝐺 results in different distributions 𝐷|𝐺 and the characteristic 

matrix of  

𝑀(𝐷)𝑥,𝑦 = 
𝐼 ∗ (𝐷, 𝑥, 𝑦)

𝑙𝑜𝑔2 𝑚𝑖𝑛{𝑥, 𝑦}
 (4-16) 

where 𝐼 ∗ (𝐷, 𝑥, 𝑦) = max(𝐼𝐷|𝐺) over all grids 𝐺 in 𝑥 columns and 𝑦 rows. 

The characteristic matrix is then used in the calculation of 𝑀𝐼𝐶 as 

𝑀𝐼𝐶(𝐷) =  𝑚𝑎𝑥
𝑥𝑦<𝐵(𝐷)

𝐼 ∗ (𝐷, 𝑥, 𝑦)

𝑙𝑜𝑔2 𝑚𝑖𝑛{𝑥, 𝑦}
 (4-17) 

where 𝐵(𝑛) is the upper bound on the grid size. 
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4.5 Neural Network Design 

4.5.1 System Modeling 

System modelling is a challenging field as there could be no or little physical 

insight and typically, mathematical models were derived to understand the 

behaviour of a complex system such as an oil and gas well. With increasing 

uncertainties and complexities, the use of a data-driven model becomes 

more appropriate in realizing prediction systems. Many processes in 

practice are continuous and their models are commonly derived from basic 

principles like mass and energy balances resulting in nonlinear continuous 

time models. A proper assumption, as normally done in identification, is 

that a discrete time nonlinear system with a fixed unknown structure and 

constant unknown parameters exists (Chen and Billings, 1992). This 

assumption was applied throughout this work and assumed that an 

originally continuous time process is discretizable where the continuous 

time system was modelled with a discrete time nonlinear model. It is well 

known that a nonlinear system can be described by a nonlinear time series 

model involving nonlinear regression of past data. A general model of a 

discrete time noise process can be mathematically modelled (Priestley, 

1988). 

 Causal modelling attempts to resolve questions about possible causes 

to provide explanations of phenomena (effects) because of previous 

phenomena (causes). Without loss of generality, a causal model (structure) 

consists of a representation of the phenomena along with indicating the 

cause-and-effect relationships amongst the phenomena. A causal system, 

also known as a physical or non-anticipative system is a system where the 

output depends on past and current inputs but not future inputs i.e., the 

output 𝐲(𝐭𝟎) only depends on the input 𝐮(𝐭) for values of 𝐭 < 𝐭𝟎. Through a 

procedure known as systems identification, causal neural networks may be 

modelled. Causal neural networks seek to isolate variables that represent 
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the "cause" phenomena and those, which represent the "effect" 

phenomena, and to determine the magnitude and direction of change in 

the effects corresponding to a change in the cause. Identified variables in 

conjunction with their functional relationships can serve as a useful 

computational model for making inferences (Pearl, 1987). 

4.5.2 Linear System Identification 

The field of system identification is well developed for linear systems 

(Ljung, 1987). However, a linear model is only useful if the underlying 

physical process exhibits qualitatively similar dynamic behaviour to the 

linear model in the operating region of interest. All physical systems are 

nonlinear to a certain extent. As a result, much research is dedicated to 

the development of approaches for modelling and analysis of nonlinear 

systems. Nonlinear systems usually exhibit a variety of complex dynamic 

behaviours. This complex behaviour of nonlinear systems and the fact that 

it is usually not possible to incorporate any a priori knowledge about the 

system dynamics in the identification procedure makes it almost impossible 

to estimate the “true” nonlinear model of a physical process. 

 The primary aim is to construct networks that allow modelling of the 

global system dynamics devoid of the need for physical insight or an 

extensive prior knowledge. Approximating a parameterized model in this 

fashion is known as Black Box Modelling, while one that is created purely 

from physical insight of the system is termed White Box Modelling. 

Prediction with neural networks uses models that require extensive analysis 

of the system under study. It is important that the data is analysed before 

being fed into the model. This somewhere-in-between approach is 

commonly referred to as Grey Box Models and the challenge is to develop 

structures that allow models that are inclined towards the black box 

modelling approach. 
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 Systems identification is a field that has been given prominence due 

to its ability to identify the transfer functions of linear systems based on a 

given set of inputs and outputs. This serves as a powerful tool as real 

systems may be modelled using the black box approach (Ljung, 2001). 

Systems identification is the process of finding a model of a physical system 

given the input-output measurements. Nonlinear system identification is a 

much more recent discipline than linear system identification and the 

theory for the nonlinear case is often an extension of the linear one. For 

linear systems, system identification and control are well-developed 

disciplines with decades of research. The use of mathematical modelling is 

limited in the sense that for many complex non-linear systems, the 

equations may not be available or sufficiently formulated. An area of recent 

interest is the use of neural networks in carrying out systems identification. 

This is especially so in the identification of complex non-linear systems. 

Like the linear case, non-linear system identification is an extension for 

non-linear time invariant complex systems. There are many model 

structures used in the linear case and one that has been particularly 

explored is that of the Auto Regression with Exogenous (ARX) inputs. For 

nonlinear systems, however the theory is significantly less well founded. 

Properties such as observability, stability and controllability are not 

straightforward in the nonlinear case. Nevertheless, neural networks 

despite the challenges, have been incorporated in system identification and 

control problems with much success (Norgaard, Ravn, Poulsen, and 

Hansen, 2000). 

4.5.3 Linear Model Estimation 

Dynamic models are mathematical relationships between the system’s 

inputs 𝐮(𝐭) and outputs 𝐲(𝐭) that can be used to compute the current output 

from previous inputs and outputs. The general form of a model in discrete 

time is given by. 
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𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1),… 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡 − 𝑛𝑘), …𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1)) (4-18) 

where the function 𝑓 depends on a finite number of previous inputs 𝑢 and 

outputs 𝑦. 𝑛𝑎 is the number of past output terms and 𝑛𝑏 is the number of 

past input terms used to predict the current output. 𝑛𝑘 is the delay from 

the input to the output, specified as the number of samples (The 

MathWorks Inc, 2014). 

 Generally, all systems are nonlinear, and the output is a nonlinear 

function of the input variables. However, a linear model is often sufficient 

to accurately describe the system dynamics and therefore, it is customary 

that a linear model is initially fitted during the identification exercise. The 

additional flexibility of nonlinear models may be sought after under varying 

situations. The linear model may provide a poor fit to the measured output 

signals and little or no improvement by changing the model structure or 

order. In this case, nonlinear models become suitable candidates as they 

have more flexibility in capturing complex phenomena than their linear 

counterparts of similar orders. Based on physical insight or data analysis, 

the system may be deemed weakly nonlinear. The approach would be to 

initially estimate a linear model and then use this estimated linear model 

as an initial model for nonlinear estimation. In this way, the fit of the 

nonlinear estimation can be improved by using nonlinear components of 

the model structure to capture the dynamics. The physical insight of the 

system may exhibit nonlinear characteristic, in which case the system can 

represented as a nonlinear grey box model. Before fitting a nonlinear 

model, transformation of the input and output variables should be carried 

out such that the relationship between the transformed variables becomes 

linear. 

 The Final Prediction Error (FPE) criterion provides a measure of model 

quality by simulating the situation where the model is tested on a different 

data set  (Ljung, 2011). According to Akaike, the most accurate model has 
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the smallest FPE (Pan, 2008). The Final Prediction Error (FPE) is defined 

by, 

𝐹𝑃𝐸 = 𝑉 (
1 +

𝑑
𝑁

1 −
𝑑
𝑁

) (4-19) 

where 𝐕 is the loss function, 𝐝 is the number of estimated parameters, and 

𝐍 is the number of values in the data set. 

 Assuming that final prediction error is asymptotic for 𝐝 << 𝐍 the 

following approximation may be made to compute 𝐹𝑃𝐸, 

𝐹𝑃𝐸 = 𝑉 (1 +
2𝑑

𝑁
) (4-20) 

The loss function 𝐕 is defined by the following equation: 

𝑉 = 𝑑𝑒𝑡 (
1

𝑁
∑ɛ

𝑁

1

(𝑡, 𝜃𝑁)(ɛ(𝑡, 𝜃𝑁))
𝑇
) (4-21) 

where  ɛ(𝐭, 𝛉𝐍) is the prediction error and  𝚹𝐍 represents the estimated 

parameters. 

 Akaike’s Information Criterion (𝐴𝐼𝐶) is defined by the following 

equation, 

𝐴𝐼𝐶 = 𝑙𝑜𝑔 𝑉 +
2𝑑

𝑁
 (4-22) 

where 𝑉 is the loss function, 𝐝 is the number of estimated parameters, and 

𝑁 is the number of values in the estimation data set (Bozdogan, 1987). 

For 𝐝 << 𝐍: 

𝐴𝐼𝐶 = 𝑙𝑜𝑔 (𝑉 (1 +
2𝑑

𝑁
)) (4-23) 

 A linear ARX model is checked based on the linear model order 

estimated to provide some insight on the dataset. The Final Prediction Error 

(FPE) criterion provides a measure of model quality by simulating the 
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situation where the model is tested on a different training dataset (Akaike, 

1969).  

4.5.4 Nonlinear ARX Models 

Nonlinear ARX models extend the linear ARX models to the nonlinear case 

with the following structure: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡 − 𝑛𝑘), … , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1)) (4-24) 

 A nonlinear ARX model can be understood as an extension of a linear 

model. A linear SISO ARX model has this structure: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2)+.…+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎)
= 𝑏1𝑢(𝑡) + 𝑏2𝑢(𝑡 − 1)+.…+ 𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑏 + 1) + 𝑒(𝑡) 

(4-25) 

where the input delay 𝑛𝑘 is zero to simplify the notation. 

 The current output 𝐲(𝐭) is predicted as a weighted sum of past output 

values and current and past input values. Rewriting the equation as a 

product: 

𝑦𝑝(𝑡) = [−𝑎1, −𝑎2, … , −𝑎𝑛𝑎, 𝑏1, 𝑏2, … , 𝑏𝑛𝑏]

∗ [𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡), 𝑢(𝑡
− 1), … , 𝑢(𝑡 − 𝑛𝑏 − 1)]𝑇 

(4-26) 

where [𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… . . , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡), 𝑢(𝑡 − 1), 1, 𝑢(𝑡 − 𝑛𝑏 − 1)] are 

delayed input and output variables known as regressors. The linear ARX 

model thus predicts the current output 𝑦𝑝 as a weighted sum of its 

regressors. 

This structure can be extended to create a nonlinear form as: 

𝑦𝑝(𝑡) = 𝑓 (
𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3),… , 𝑢(𝑡), 𝑢(𝑡 − 1),

𝑢(𝑡 − 2), . .
) (4-27) 

Instead of the weighted sum that represents a linear mapping, the 

nonlinear ARX model has a more flexible nonlinear mapping function where 

𝑓 is a nonlinear function. In addition, the inputs to 𝑓 are model regressors. 

Several nonlinear mapping functions such as wavelet network, one-layer 
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sigmoid network, multilayered neural network, etc are amongst the most 

common non-linear estimators. Nonlinear ARX regressors can be both of 

delayed input-output variables with more complex nonlinear expressions of 

delayed input and output variables. In the simplest case, regressors are 

delayed inputs and outputs, such as 𝑢(𝑡 − 1) and 𝑦(𝑡 − 1) and are called 

standard regressors. 

 By default, all regressors are inputs to both the linear and the 

nonlinear function blocks of the nonlinearity estimator as depicted in Figure 

4-3. 

Nonlinear

Function

Linear

Function

Regressors
u(t), u(t-1),y(t-1), ...

u
y

 

Figure 4-3: Non-linear ARX Model Block Diagram 

 The nonlinearity estimator block maps the regressors to the model 

output using a combination of nonlinear and linear functions. The 

nonlinearity estimator block can include linear and nonlinear blocks in 

parallel. 

4.5.5 Artificial Neural Networks 

Neural networks have been used to model single-input-single-output 

(SISO) systems where a high level of confidence was obtained, and 

demonstrated by the good one-ahead prediction of the output (Tant and 

Cauwenberghe, 1996).  
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 The field of artificial intelligence (AI) is not new, but with advancing 

computing capabilities readily available on desktop computers, the 

methodology is increasingly being used in addressing problems in industry. 

Artificial Neural Networks (ANN’s) are the most commonly deployed form 

of artificial intelligence today and have found applications across both 

industry and commerce. ANN’s are able to approximate any non-linear 

system quite easily based on relevant data pertaining to the system of 

interest. There are also other sand prediction tools based on rigorous 

mathematics around the understanding of rock mechanics. The 

complexities and intricacies of multiphase flow presents an enormous 

challenge in the oil and gas industry and have gained momentum in 

academic research laboratories with major oil companies under various 

Joint Industry Projects (Falcone, Teodoriu, Reinicke, and Bello, 2007). 

Nevertheless, the use of AI and particularly in the area of neural networks 

in the oil and gas industry has been slow. Its novelty is yet to be fully 

realized for the obvious benefits and eminent profitability that ANN 

promises. The next section will focus on a commonly used network 

structure, the perceptron. 

 One widely used application of ANN in engineering is pattern 

classification based on of carefully chosen independent variables. 

Rosenblatt wrote the first paper on the network structure called the 

perceptron. Perceptrons are also used extensively as adaptive filters 

(Rosenblatt, 1958). Limitations of these so-called single layer perceptrons 

led to the development of Multilayered Perceptrons (MLP) that included a 

hidden layer of nonlinear neurons. The MLP’s ability to approximate 

nonlinear functions is summarized in the following theorem, known as the 

universal approximation theorem (Cybenko, 1989), which states that "A 

feed forward neural network with a sufficiently large number of hidden 

neurons with continuous and differentiable transfer functions can 

approximate any continuous function over a closed interval" 
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 It was subsequently shown that it was not the specific choice of the 

sigmoid activation function, but rather the multilayer feedforward 

architecture itself that gives neural networks the potential of being 

universal approximators (Hornik, Stinchcombe, and White, 1989). The use 

of neural networks as a generic model structure for the identification of 

nonlinear dynamic systems is an area of current research actively pursued. 

The Multilayer Perceptron (MLP) network is a very common member of the 

neural network family due to its ability to model simple as well as complex 

functions (Kim and Adali, 2003). In its simplest form, the perceptron 

consists of a single neuron with multiple input synapses. The neuron is 

presented with training patterns and the corresponding target classes. 

Rosenblatt proved that if two classes were linearly separable the 

perceptron would converge to a configuration of parameters that classifies 

each pattern correctly (Rosenblatt, 1961). For the case of a single neuron, 

this is equivalent to placing a dividing hyperplane in the weight space. This 

form of training is called supervised learning or learning with a teacher. 

Limitations of these so-called single layer perceptrons led to the 

development of Multilayered Perceptrons (MLP) that included a hidden 

layer of nonlinear neurons. 

 The class of MLP-networks, shown in Figure 4-4 is those confined to 

having only one hidden layer with hyperbolic tangent and linear activation 

functions (Norgaard, Ravn, and Poulsen, 2002). 
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Figure 4-4: MLP with hidden layer of nonlinear neurons - Source: (Norgaard 
et al., 2002) 

 

where,    𝑦̂𝑖 is the prediction at time t=𝑖 

 𝑧𝑖 is the input-output pair at time t=𝑖 

 𝑤𝑗𝑖 is the weight matrix between input and hidden layers 

 𝑊𝑖𝑗 is the weight matrix between hidden and output 

layers 

 𝑓𝑗(.)  𝑗=1,2 is the activation function between input and 

hidden layers 

 𝐹𝑖(.) 𝑖=1,2 is the activation function between hidden and 

output layers 

 

The function is described in (Norgaard et al., 2000) and is given by the 

following, 

𝑦̂𝑖(𝑤,𝑊)            =    𝐹 (∑𝑊𝑖𝑗

𝑞

𝑗=1

ℎ𝑗(𝑤) + 𝑊𝑖0)          

=    𝐹𝑖 (∑𝑊𝑖𝑗𝑓𝑗

𝑞

𝑗=0

(∑𝑤𝑗𝑖

𝑚

𝑙=1

𝑧𝑖 + 𝑤𝑗0) + 𝑊𝑖0)   

(4-28) 

The weights vector, 𝜃, are the adjustable parameters of the network 

determined through a process called training. 
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𝑍𝑁 = {[𝑥(𝑡), 𝑦(𝑡)]𝑡 = 1,… . . 𝑁} (4-29) 

 The objective of training is then to determine a mapping from the set 

of training data to the set of possible weights. 

𝑍𝑁 → 𝜃 (4-30) 

so that the network will produce predictions 𝑦̂𝑖, which in some sense are 

“close” to the true outputs 𝑦(𝑡). 

 The prediction error approach is based on the introduction of a 

measure of closeness in terms of a mean square error criterion. 

𝑉𝑁(𝜃, 𝑍𝑁) =
1

2𝑁
∑[𝑦(𝑡) − 𝑦̂(𝑡|𝜃)]𝑇
𝑁

𝑡=1

[𝑦(𝑡) − 𝑦̂(𝑡|𝜃)] (4-31) 

 The weights are then found as: 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉𝑁(𝜃, 𝑍𝑁) (4-32) 

by some kind of iterative minimization scheme: 

𝜃(𝑖+1) = 𝜃(𝑖) + 𝜇(𝑖)𝑓(𝑖) (4-33) 

where 𝜃(𝑖) specifies the current iterate, 𝑓(𝑖) is the search direction, and 𝜇(𝑖) 

is the step size. 

4.6 Model  

4.6.1 Network Architecture and Order 

The arrangements of neurons in the different layers and the pattern of 

connection within the neural network are generally called the architecture 

of the net. Essentially, there are feedforward and feedback or recurrent 

networks. Multi-layered perceptron (MLP) are strictly feed-forward (one 

directional), i.e., a node from one layer can only have connections to a 

node of the next layer and all layers are fully connected. 
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 The simplest and most widely used approach for modelling nonlinear 

dynamics using neural networks is extending the linear ARX model with a 

neural network to form the Neural Network Auto Regressive with 

Exogenous inputs (NNARX) model. For MISO systems, the NNARX model 

has been used to train and validate application specific data with a high 

degree of level of confidence (Chen and Billings, 1992). The network as 

depicted in Figure 4-5 is trained based on the NNARX model structure. Let 

𝛗(𝐭) be a vector containing the regressors, and 𝜃 be a vector containing 

the weights and the function, 𝐟 realized by the neural network. 

u(t) y(t)

+

ψ(t)

-

ŷ(t)

S

PLANT

MODEL STRUCTURE

 
Figure 4-5: Model NNARX Structure 

 Due to the complexity, uncertainty and nonlinearity of a large class of 

systems, it is difficult to derive accurate and complete equations of 

appropriate models for input-state-output representations of the systems 

from first principles. Input-output models based on input-output data are 

employed to represent the unknown nonlinear systems. The identification 

from sampled input and output signals involves two tasks; identification of 

model orders and nonlinear function approximation. In order to obtain a 

valid neural network model based on the prediction error principle, the 

model orders and the number of hidden units must be adjusted. 
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 For the NNARX model structure, the number of past signals (i.e., 

model order) that were used as regressors has to be determined. Various 

functions can be used to estimate the order to observe a reasonable 

performance and in this case, the Lipschitz function is employed that is 

based on the Lipschitz  condition (He and Asada, 1993). The approach is 

based on the continuity property of the nonlinear functions, which 

represents input-output models of continuous dynamic system. The input 

output model representing nonlinear dynamical systems described by 

differential or difference equations relating input and output of the systems 

as in, 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 𝜏), … , 𝑦(𝑡 − 𝑚𝜏), 𝑢(𝑡 − 𝜏), … , 𝑢(𝑡 − 𝑙𝜏)) (4-34) 

Parameters 𝑚 and 𝑙 in (4-34) are orders of the input-output model. 

𝑦 = 𝑓(𝑥) =  𝑓(𝑥1 , 𝑥2, …… , 𝑥𝑛) (4-35) 

The non-linear function 𝑓(𝑥) can be re-constructed from input-output data 

pairs (𝑥_𝑖  , 𝑦_𝑖). The Lipschitz quotient, 𝑞𝑖𝑗 can be defined as given. 

𝑞𝑖𝑗 =
|𝑦𝑖 − 𝑦𝑗|

|𝑥𝑖 − 𝑦𝑗|
, (𝑖 ≠ 𝑗) (4-36) 

|xi − yj| is the distance of two parts 𝑥𝑖 and 𝑦𝑖 in the input space and |yi − yj| 

is the difference of 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗). 

If the function 𝑓(𝑥) is continuous, Lipschitz condition states that Lipschitz 

quotient must be bounded for any input-output data pairs where 𝐿 is a 

bounded value. 

0 ≤ 𝑞𝑖𝑗  ≤ 𝐿 (4-37) 

From (4-35) and (4-36), a large Lipschitz quotient only occurs for data 

points 𝑖 and 𝑗 with a small distance |𝑥𝑖 − 𝑦𝑗|. The bound of Lipschitz 

quotient, 𝑞𝑖𝑗 is obtained using the Schwartz inequality and is given by, 

𝑞𝑖𝑗
(𝑛)

≤ √𝑛 𝑀 (4-38) 
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The following index is used to identify the optimal number of input 

variables. 

𝑞
(𝑛)

= (∏√𝑛 𝑞(𝑛)〖(𝑘))
1

𝑝⁄

𝑝

𝑘=1

〗 
(4-39) 

where 𝑞(𝑛)(𝑘) is the 𝑘-largest Lipschitz quotient among all 𝑞𝑖𝑗
(𝑛)

 with 𝑛 input 

variables. In plotting a curve of 𝑞
(𝑛)

 against 𝑛, 𝑞
(𝑛)

wil reach some saturated 

value when 𝑛 = 𝑛0. Then, 𝑛0 is the optimal number of optimal input 

variables. 𝑝 is generally selected to be 0.01 ~ 0.02𝑁. 

 Given a set of corresponding inputs and outputs of an input-output 

model, the Lipschitz function calculates a matrix of indices to determine a 

proper lag space structure before identifying a model of a dynamic system. 

An insufficient lag space structure leads to a large index. While increasing 

the lag space, the index will decrease until a sufficiently large lag space 

structure is reached. Increasing the lag space beyond this will not reduce 

the index significantly. 

 The regression vector for the NNARX model structure is an expression 

given by equation ((4-40), 

𝜑(𝑡) = [𝑦(𝑡 − 1)…𝑦(𝑡 − 𝑛𝑎)… . 𝑢(𝑡 − 𝑛𝑏 – 𝑛𝑘 + 1)]𝑇 (4-40) 

 

where,   𝜑(𝑡) is a vector containing the regressors, 
 𝑦(𝑡) is the output 

 𝑢(𝑡) is the input 

 𝑛𝑎 is number of past outputs used for 
determining the prediction 

 𝑛𝑏 is the number of past inputs 

 𝑛𝑘 is the time delay  

and the predictor  𝑦̂(𝑡|𝜃)  is expressed by equation ((4-41),  

𝑦̂(𝑡|𝜃) =  𝑦̂(𝑡|𝑡 − 1, 𝜃) = 𝑓(𝜑(𝑡), 𝜃) (4-41) 

where, 𝛗(𝐭) is a vector containing the regressors, 𝛉 is a vector containing 

the weights and 𝑓 is the function realized by the neural network. 
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 The NNARX model has a predictor without feedback. Other model 

types have feedback through the choice of regressors, which means that 

the networks become recurrent whereby future inputs will depend on 

present and past network outputs. This might lead to instability in certain 

regimes of the network operating range and it can be very difficult to 

determine the stability of the predictor (Norgaard et al., 2000).  

ŷ(t)NNARX

u(t-1)
:
:

u(t-na)

y(t-1)
:
:

y(t-nb)

 

Figure 4-6: Neural Network ARX Model Structure with past inputs and 
outputs 

4.6.2 Activation Function 

Activation functions in the hidden units introduce nonlinearity into the 

multilayer network. The capability to represent nonlinear functions makes 

multilayer networks so powerful. Moreover, back propagation learning, 

requires that the activation function must be differentiable and bounded. 

The sigmoidal functions such as logistic and tanh and the Gaussian function 

are the most common choices are S-curved functions. It should be noted 

that functions that produce both positive and negative values tend to yield 

faster training than functions that produce only positive due to better 

numerical conditioning. Numerical condition affects the speed and accuracy 

of most numerical algorithms.  
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 For hidden units, sigmoid activation functions are usually preferable 

to threshold activation functions. The fast hyperbolic tangent function was 

used as the activation for the hidden layer and the function is given below. 

𝑡𝑎𝑛ℎ 𝑥 =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

                      =  
𝑒2𝑥 −  1

𝑒2𝑥 +  1
             

                  = 1 − 
2

𝑒2𝑥 +  1
 

(4-42) 

 Since there is only single output, the output layer is a single linear 

neuron. 

4.6.3 Learning Rate 

The rate at which ANN learns depends upon several controllable factors. A 

slower learning rate means a more time significantly is spent in 

accomplishing the off-line learning to realise an adequately and satisfactory 

trained system (Anderson and Mcneill, 1992). On the other hand, with 

faster learning rates the network may not be able to make the fine 

discriminations possible with a system that learns slower. Adaptive step 

methods with an algorithm based on a global learning rate is desirable 

where are all the weights are updated in the network  (Rojas, 1996). The 

idea of the method is to use the negative gradient direction to generate 

two new points instead of one. The point with the lowest error is used for 

the next iteration. If it is the farthest away, the algorithm accelerates, by 

making the learning constant bigger. If it is the nearest one, the learning 

constant is reduced. The family of second-order algorithms considers more 

information about the shape of the error function instead of the gradient. 

A better iteration can be performed if the curvature of the error function is 

also considered at each step. In second-order methods a quadratic 

approximation of the error function is found to be of superior performance 

when compared to standard back propagation techniques (Battiti, 1992). 

The Taylor Series, which approximates the error function 𝐸(𝑢), as given by 
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                         𝐸(𝑢) =  𝐸(𝑢1, 𝑢2. …… . 𝑢𝑛) (4-43) 

The Taylor series for this function about the point "𝑢 ∗ ” , in "𝑢”  is, 

E(u)= E(u* )+
𝜕

𝜕𝑢1
 E(u) ǀ

ǀ

 
 

𝑢 = 𝑢∗
(𝑢1 − 𝑢1

∗)  

+
𝜕

𝜕𝑢2
 E(u) ǀ

ǀ

 
 

𝑢 = 𝑢∗
(𝑢2 − 𝑢2

∗)  + ⋯ 

… + 
𝜕

𝜕𝑢𝑛
 E(u) ǀ

ǀ

 
 

𝑢 = 𝑢∗
+

1

2

𝜕2

𝜕𝑢1
2  E(u) ǀ

ǀ

 
 

𝑢 = 𝑢∗
(𝑢1 − 𝑢1

∗)2 

… +
1

2

𝜕2

𝜕𝑢1   𝜕𝑢2   
 E(u) ǀ

ǀ

 
 

𝑢 = 𝑢∗
(𝑢1 − 𝑢1

∗)  (𝑢2 − 𝑢2
∗)2 

(4-44) 

This may be written in Matrix form as shown in equation (4-45), 

E(u)= E(u* )+𝛻𝐸(𝑢)𝑇

 
ǀ
ǀ

 
 

𝑢 = 𝑢∗
(𝑢 − 𝑢 

∗)

+ ⋯
1

2
(𝑢 − 𝑢 

∗)
𝑇
𝛻2𝐸(𝑢) 

 
ǀ
ǀ

 
 

𝑢 = 𝑢∗
(𝑢 –𝑢 

∗)   

(4-45) 

where  𝛻𝐸(𝑢) is defined as the gradient given by equation (4-46), 

𝛻𝐸(𝑢) =  [
𝜕

𝜕𝑢1
F(u)      

𝜕

𝜕𝑢2
F(u) …

𝜕

𝜕𝑢𝑛
F(u) ]

𝑇

 (4-46) 

and the  𝛻2𝐸(𝑢) is the Hessian matrix which is given by equation (4-47), 

 𝛻2𝐸(𝑢) =

[
 
 
 
 
 
 

 

𝜕2

𝜕𝑢1
2 “𝐸(𝑢)” 

𝜕2

𝜕𝑢1   𝜕𝑢2   
“ 𝐸(𝑢)” …

𝜕2

𝜕𝑢1   𝜕𝑢𝑛   
“𝐸(𝑢)” 

𝜕2

𝜕𝑢2   𝜕𝑢1   
“𝐸(𝑢)” 

𝜕2

𝜕𝑥2
2 “ 𝐸(𝑢)” …

𝜕2

𝜕𝑢2   𝜕𝑢𝑛   
“ 𝐸(𝑢)” 

⋮ ⋮   ⋮
𝜕2

𝜕𝑢𝑛   𝜕𝑢1   
“ 𝐸(𝑢)” 

𝜕2

𝜕𝑢𝑛   𝜕𝑢2   
“ 𝐸(𝑢)” …

𝜕2

𝜕𝑢𝑛
2 “ 𝐸(𝑢)” 

 

]
 
 
 
 
 
 

 (4-47) 

The gradient of the error function can be computed by differentiating 

equation (4-46) and since a minimum of the error function is required, this 

is equated to zero. The minimization problem can be solved in a single step 

if the Hessian matrix and the gradient have been previously computed 

under the assumption of a quadratic error. However, computing the 
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Hessian matrix can become quite a difficult task and approximation is 

carried out using the inverse Hessian shown in (4-47). 

4.6.4 The Levenberg-Marquart Algorithm 

The Levenberg-Marquart method is one of the standard methods for the 

minimization of mean square error criterion, due to its rapid convergence 

properties and robustness. A version of the method  was applied with the 

primary difference being that the size of the elements of the diagonal 

matrix added to the Gauss-Newton approximation of the Hessian matrix is 

adjusted according to the size of the ratio between actual decrease and 

predicted decrease (Norgaard et al., 2002). The Gauss-Newton algorithm 

was designed for minimizing functions that are sums of squares of other 

non-linear functions, which is well suited for neural network training where 

the performance index is the mean squared error (MSE) or the normalised 

sum of squared error (NSSE). 

 Network complexity, size, architecture, learning rules employed, and 

desired accuracy must be given due consideration. These factors play a 

significant role in determining the training duration. Most learning functions 

depend on a learning rate, which may be fixed or variable. Most of these 

laws are some sort of variation of the best-known and oldest learning law, 

Hebb's Rule (Hebb, 1949). The Levenberg-Marquart method is one of the 

standard methods for minimization of mean square error criterion, due to 

its rapid convergence properties and robustness (Levenberg, 1944). 

Levenberg proposed an algorithm based on this observation, whose update 

rule is given as 

𝑥𝑖+1  = 𝑥𝑖 – (𝐻 +  𝜆 𝑑𝑖𝑎𝑔[𝐻])−1 𝛻 𝑓(𝑥𝑖 ) (4-48) 

where 𝐻 is the Hessian matrix evaluated at 𝑥𝑖 . 

The update rule (Ranganathan, 2004) is used in the following way: 

• If the error goes down following an update, it implies that the 
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quadratic assumption on 𝐟(𝐱𝐢) is working and therefore, it needs to be 

reduced by 𝛌 to reduce the influence of gradient descent. 

• On the other hand, if the error goes up, the gradient will be followed 

more and so 𝛌 is increased by the same factor.  

The Levenberg algorithm is as follows: 

i. Provide an initial learning rate, 𝛌𝟎. 

ii. Do an update as directed by the rule above. 

iii. Evaluate the error of the new parameter vector. 

iv. If the error has increased as a result the update, then reset the 

weights to the previous values and increase the new 𝛌 by some 

significant factor. Go back to step (ii) and try an update again. 

v. If the error has decreased due to the update, then keep the weights 

at the new values and decrease 𝛌 by a factor. 

4.7 Improve & Optimise Performance 

The Optimal Brain Surgeon (OBS) is the most important strategy, and it is 

consequently the only method, which has been implemented for dynamic 

systems. The method was originally proposed by (Hassibi and Stork, 1993). 

A modification of the method was derived so that it can handle networks 

trained according to the regularized criterion, and defined a saliency as the 

estimated increase of the unregularized criterion when a weight is 

eliminated (Larsen, Hansen, Svarer, and Ohlsson, 1996). 

 A new expression for the saliences is obtained where the saliency for 

weight 𝜁𝑗 is defined as 

𝜁𝑗 = 
𝜆

𝑁
𝑒𝑗

𝑇𝐻−1(𝜃∗)𝐷𝜃∗ + ………… 

                             … . .   
1

2
𝜆𝑗

2 𝑒𝑗
𝑇 𝐻−1(𝜃∗) 𝑅(𝜃∗) 𝐻−1 (𝜃∗) 𝑒𝑗 

(4-49) 

where 𝜃∗ specifies the minimum and H(𝜃∗) the Gauss-Newton Hessian of 

the regularized criterion 
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𝐻(𝜃∗) = 𝑅(𝜃∗) +
1

𝑁
 𝐷 (4-50) 

where  𝑒𝑗 is the 𝑗th unit vector and  𝜆𝑗  is the Lagrange multiplier, which is 

determined by. 

𝜆𝑗 =
𝑒𝑗

𝑇𝜃∗

𝑒𝐽
𝑇𝐻−1(𝜃∗)𝑒𝑗

=
𝜃𝑗

∗

𝐻𝑗,𝑗
−1(𝜃∗)

 (4-51) 

The constrained minimum (the minimum when weight 𝑗 is 0) is then found 

from, 

𝛿𝜃 = 𝜃∗ − 𝜃 = −𝜆𝑗 𝐻
−1 (𝜃∗) 𝑒𝑗 (4-52) 

Notice that for the unregularized criterion, where R(𝜃∗ ) = H(𝜃∗), the above 

algorithm will degenerate to OBS scheme (Hassibi and Stork, 1993). 

  A modification to the algorithm to address the situation was made 

which does not allow a single weight to a unit in the hidden layer to be 

removed whilst it is still connected to the outer layer (Norgaard et al., 

2002). 

 The variable 𝐉 is defined as the set of indices to the weights leading 

to and from the unit in the hidden layer. Let 𝐸𝐽 be a matrix of unit vectors 

corresponding to each element of the set 𝐉. In order to calculate the 

saliency for the entire unit, the above expressions are then modified to: 

𝜁𝐽 = 𝜆𝐽
𝑇𝐸𝐽

𝑇𝐻−1(𝜃∗) 
1

𝑁
𝐷𝜃∗ +

1

2
𝜆𝐽

𝑇𝐸𝐽
𝑇𝐻−1(𝜃∗)𝑅(𝜃∗)𝐻−1(𝜃∗)𝐸𝐽𝜆𝐽 (4-53) 

 

𝜆𝑗 = [𝐸𝑗
𝑇𝐻−1(𝜃∗)𝐸𝐽]

−1
𝐸𝐽

𝑇𝜃∗ (4-54) 

 

𝛿𝜃 = 𝜃∗ − 𝜃 = −𝐻−1(𝜃∗)𝐸𝐽𝜆𝐽 (4-55) 

 When a weight (or unit) has been removed, it is necessary to obtain 

the new inverse Hessian before proceeding to eliminate new weights. If 

the network has been retrained, it is necessary to construct and invert the 

Hessian once more. However, if the network is not retrained, inversion of 
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partitioned matrices can be used for approximating the inverse Hessian of 

the reduced network (Pedersen, Hansen, and Larsen, 1995). 

 Assuming that the pruned weights are located at the end of the 

parameter vector, 𝛉, the Hessian is then partitioned as follows in equation 

(4-56), 

𝐻 = [
𝐻̃ ℎ𝐽

ℎ𝐽
𝑇 ℎ𝐽𝐽

] (4-56) 

where 𝐇̃ is the 'new' Hessian, which is to be inverted and partitioning the 

inverse Hessian in the same way yields equation (4-57), 

𝐻−1 = [
𝑃̃ 𝑝𝐽𝐽

𝑝𝐽
𝑇 𝑝𝐽𝐽

] (4-57) 

The new inverse Hessian is then determined as the Schur Complement 

(Burns, Carlson, Haynsworth, and Markham, 1974) of 𝑃̃ and is given by 

equation (4-58), 

𝐻̃−1 = 𝑃̃ − 𝑝𝐽𝑝𝐽𝐽
−1𝑝𝐽

𝑇 (4-58) 

4.8 Summary 

In this chapter, the proposed algorithm was described, and the description 

of the various approaches was outlined. Due to the high co-linearity of the 

input variables, opportunities were identified to reduce the number of input 

variables to those that significantly contributed to the derivation of the 

critical flowing bottomhole pressure (CFBHP). PCA is a technique that maps 

the input vector or predictive variables only, the method is extended to 

principal component regression (PCR). In most real-life applications, 

systems are non-linear and can be modelled by a non-linear time series. 

Causal modelling is introduced and how the principles of systems 

identification can be used to model complex non-linear systems. The use 

of artificial neural networks with reference to the multilayer perceptron was 

discussed. The simplest and most widely used approach for modelling 
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nonlinear dynamics using neural networks was extending the ARX model 

with a neural network to form the Neural Network Auto Regressive with 

Exogenous inputs (NNARX) model. The model structure of the NNARX 

model and its corresponding regressors was introduced. The Lipschitz 

function is used to estimate the order to observe a reasonable 

performance. The underlying details of the neural network in terms of its 

activation functions, learning algorithm were under-pinned. In order to 

address the problem of over-fitting and improve the performance of the 

network, the concepts of pruning were introduced. 
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CHAPTER 5 
 

RESULTS AND DISCUSSIONS 
 

5.1 Introduction 

Having determined the measurements of process parameters that were 

required to design a representative model of the sand prediction tool, an 

automated and smart data pre-processing module was designed for rapid 

prototyping and simulation of the archived data. For a pre-analysis of the 

input data, a suitable subset was selected such that there was sufficient 

excitation. With these multiple inputs, the neural networks effectively 

identified a system without a priori knowledge. In this case, a selected 

dataset consisting of multiple inputs from the process measurements and 

the corresponding output of the sand erosion loss measurement has been 

implemented to model a Multiple Input Single Output (MISO) system. 

Model training and validation constitutes an important aspect of modelling 

to minimise the problem of overfitting when presenting new data to the 

model. Model training was adopted methodically, and with a prior 

knowledge, parameters of the model was adjusted to obtain the optimum 

model based on a specific dataset. 

5.2 Data Pre-processing 

The neural network was trained with the training subset. After training, the 

weights of the trained network model were rescaled with the scaled mean 

and standard deviation before it was validated with the validation subset. 

In the algorithm, the dataset is divided into 3 parts; namely the training 

subset, validation subset and test dataset. The training subset was 

allocated a portion and the remaining portion was equally divided between 

the validation and test subsets. The dataset was comprised of the following 
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independent input variables, IV in Table 5-1 from the literature. 

(Gharagheizi). 

Table 5-1: Independent Variables 

Variable Description Units 

BHFP bottom hole flowing pressure Kg/cm2 

BHSP  bottom hole static pressure Kg/cm3 

COH cohesive strength of the formation Kg/cm4 

CTD critical total drawdown Kg/cm5 

DD drawdown pressure Kg/cm6 

EOVS effective overburden stress Kg/cm8 

Hperf thickness of perforation interval metres 

LGR  Liquid Gas Ratio number 

ProdLife  Production Life years 

Qg gas production rate Ksm33/day 

Qw water production rate litres//day 

Sand  Sand detected categorial (1,-1) 

SPF shot per foot number 

TT transmit time microsec/ft 

TVD  total vertical depth metres 

 

The dependent variable, DV for the output was the presence of sand at 

these wells.  

 Normalization allows the removal of systematic bias in the data. 

Before training, the inputs and targets were scaled so that they fell around 

zero. Therefore, scaling was applied to obtain a mean of zero and a 

variance of unity. This effectively standardized all the measurements of the 

process parameters that were used in the neural network. One reason for 

the use of the variance in preference to other measures of dispersion was 

that the variance of the sum (or difference) of independent random 

variables is the sum of their variances.  

 A change in the combination of the variables’ measurement provides 

an indication that sand is being produced downhole in the reservoir. The 

phenomenon cause sand to be produced to the surface and if the velocity 
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is high enough, this will result in sand erosion. Sand erosion in the flowline 

caused metal loss in the flowlines and equipment. 

5.2.1 PCR Variance  

The sum-of-squares is proportional to the covariance matrix and re-writing 

(4-9) as in (5-1), 

𝐸𝑀 =
1

2
∑ 𝑢𝑖

𝑇

𝑑

𝑖=𝑀+1

𝛱𝑢𝑖 (5-1) 

where 𝚷 is the covariance matrix of the set of vectors 𝐮𝐧 and is given in 

equation (4-10) as shown in (5-2), 

𝛱 =  ∑(𝑢𝑛 − 𝑢̅)(𝑢𝑛 − 𝑢̅)𝑇

𝑛

 (5-2) 

The minimum occurs when the basis vectors selected are the eigenvectors 

with the largest eigenvalues of the covariance matrix.  

 In taking the eigenvalues of the covariance matrix, the principal 

component variances of the eigenvectors are given in Table 5-2 below. 

Table 5-2: Eigenvalues or Variances of PCA Eigenvectors 

Eigenvector Eigenvalue % Variance Cumulative %

PC1 2.18 54.6% 54.6%

PC2 1.17 29.3% 83.8%

PC3 0.55 13.7% 97.5%

PC4 0.10 2.5% 100.0%  

From the table it can be seen that the first principal component, PC1, was 

only able to explain 54.6% of the total variance. Generally, 80% of the 

variance were to be explained and it took at least the first two principal 

components, i.e., PC1 and PC2 in order to explain 83.8% of the total 

variance. 

  



 

111 

 

5.2.2 PLSR Variance 

The SIMPLS algorithm computes a partial least squares (PLS) regression of 

the dependent variable, 𝑦 on a number of predictor or independent 

variables, 𝑢 using the PLS components or latent factors, and returns the 

predictor and response loadings.  

 𝑢 is a matrix of predictor variables, with rows corresponding to 

observations and columns to variables while y is a response matrix. In the 

predictor loadings, 𝑢𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠, each row contains coefficients that define a 

linear combination of PLS components that approximate the original 

predictor variables. In the matrix of response loadings, 𝑦𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠, each 

row contains coefficients that define a linear combination of PLS 

components that approximate the original response variables. The 

predictor scores, 𝑦𝑆𝑐𝑜𝑟𝑒𝑠, is an orthonormal matrix with rows 

corresponding to observations, columns to components and are the PLS 

components that are linear combinations of the variables in 𝑢. The 

response scores are the linear combinations of the responses with which 

the PLS components predictors scores have maximum covariance. The 

response scores matrix is neither orthogonal nor normalized. 

 The SIMPLS algorithm centres 𝑢 and 𝑦 by subtracting off column 

means to get centered variables 𝑢0 and 𝑦0. The relationships between the 

scores, loadings, and centered variables 𝑢0 and 𝑦0 are, 

𝑢𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠 =  𝑢0𝑇 ∗  𝑢𝑆𝑐𝑜𝑟𝑒𝑠 (5-3) 
 

𝑦𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠 =  𝑦0𝑇 ∗  𝑦𝑆𝑐𝑜𝑟𝑒𝑠 (5-4) 
 

where 𝑋𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠 and 𝑌𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠 are the coefficients from regressing 𝑥0 and 

y0 on 𝑋𝑆𝑐𝑜𝑟𝑒𝑠. 
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 The partial least squares regression (PLSR) computes a 2-by-4 matrix 

that contains the percentage of variance explained by the model. The 

percent of variance explained for 𝑋 and 𝑌 is computed using, 

𝑉𝑎𝑟𝑢 = 
∑𝑢𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠2

∑𝑢02
 (5-5) 

 

𝑉𝑎𝑟𝑦 = 
∑𝑦𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠2

∑𝑦02
 (5-6) 

 

For the PLSR, the percentage variance explained in 𝑢 by each PLS 

component or latent factor is given in Table 5-3. 

Table 5-3: Variance for each PLSR component or Latent Factor 

Latent Factors Variance Variance(%) Cumulative %

PLS1 0.54 54.4% 54.4%

PLS2 0.12 12.4% 66.8%

PLS3 0.07 7.5% 74.3%

PLS4 0.26 25.7% 100.0%  

From the table, there are four latent factors corresponding to the four PLS 

components. In order to explain at least 80% of the total variance, three 

PLS components were not sufficient as it cumulated to only 74.3% as the 

fourth PLSR component, PLS4 alone explained 25.7% of the variance. For 

comparison, the cumulative percentage variances for PCR and PLSR are 

plotted in Figure 5-1. It took all of the four PLS components because it 

required more information in the predictor variables that were important in 

fitting the response variable, y. Partial least squares regression (PLSR) 

finds components from 𝑢 that are also relevant for 𝑦. PLSR searches for a 

set of components or latent vectors that performs a simultaneous 

decomposition of 𝑢 and 𝑦 with the constraint that these components 

explain as much as possible of the covariance between 𝑢 and 𝑦. It is 

followed by a regression step where the decomposition of 𝑢 is used to 

predict 𝑦. The goal of partial least squares regression is to predict 𝑦 from 
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𝑢 and to describe their common structure. The PC curve is uniformly higher 

and suggests that PCR with two components, relative to PLSR, constructs 

components to best explain the predictors. 

 

Figure 5-1: Model can be represented by 2 PCR Components 

 This is because in PCA, only the predictor variables were used to 

explain the variance without the need for any regression in 𝑦. PCR performs 

a principal component analysis of the 𝑢 matrix and which then uses the 

principal components of 𝑢 as regressors on 𝑦.  

5.2.3 K-fold Cross-validation 

Cross-validation is a more statistically sound method for choosing the 

number of components in either PLSR or PCR. It avoids overfitting data by 

not reusing the same data to both fit a model and to estimate prediction 

error. Thus, the estimate of prediction error is not optimistically biased 

downwards. The technique of cross-validation was used to determine the 

optimum number of principal components by calculating the mean squared 

prediction error (MSPE).  
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 In principal components regression 10-fold cross-validation a vector 

of sum of squared prediction errors for principal components regression 

models with 0 to 10 components is produced, (with training data and test 

data). The 0th model is just the mean of the training response data. It 

computes the PCA loadings from the training predictor data and regresses 

the first ten (10) principal components on the centred training response 

data. It then computes predictions for the first through the 10 th model. In 

partial least squares regression 10-fold cross-validation, a matrix 

containing the estimated mean squared errors for PLS models with 0 to 10 

components is computed. The first row of the matrix contains mean 

squared errors for the predictor variables in 𝑢 and the second row contains 

mean squared errors for the response variable(s) in 𝑦. The MSPE is 

calculated for the principal components (PC) for both PLSR and PCR 

regression models using the 10-fold cross validation technique and is 

tabulated in Table 5-4 below. It can be seen that the principal component 

2 and 3 in PCR does not decrease the prediction error of the model, 

suggesting that the combination of predictor variables contained in that 

component is not strongly correlated with the dependent variable. This 

stems from the fact that PCR constructs components to explain variation in 

the predictive variables rather than the dependent variable. On the other 

hand, with two or three principal components for PLSR, the error 

approaches continue to steadily decrease and attains a minimum of 0.827. 

Table 5-4: 10-Fold Cross validation for PLSR and PCR 

PC PLSR PCR

0 1.000 1.000

1 0.858 0.864

2 0.843 0.864

3 0.829 0.854

4 0.828 0.827

Mean Squared Prediction Error
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5.2.4 Model Parsimony 

From the comparison of the MSPE, the different aspects need to be 

considered as to which model is more parsimonious between that of the 

PLSR or PCR. The PLS weights are the linear combinations of the original 

variables that define the PLS components. Similarly, the PCR loadings 

describe how influential each component in the PCR depends on the 

original predictor variables. In selecting the PCR components that best 

represent the predictor variables, the eigenvalues of the eigenvectors for 

can be plotted for the PCR loadings. Likewise, the PLSR weights of each of 

the PLSR components or latent vectors can be graphically depicted for 

comparison as shown in Figure 5-2. 

 

Figure 5-2: Comparison PCR Loadings and PLSR Weights  

 It can be seen that predictor variables TVD(1), Qgas(5) and Qw(6) 

have maximum PCALoadings for PCR principal component PC1, PC2 and 
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PC3. On the other hand, PLSR weights are largest for principal component 

for Qw(6), BHFP(9) and DD(10).  

5.3 Model Structure 

5.3.1 Regressors 

Due to the complexity, uncertainty and nonlinearity a large class of 

systems, appropriate models it is difficult to derive accurate and complete 

equations for input-state-output representations of the systems from first 

principles. Input-output models based on input-output data are employed 

to represent the unknown nonlinear systems. The identification from 

sampled input and output signals involve the identification of model orders 

and nonlinear function approximation. In order to obtain a valid neural 

network model based on prediction error principle, the model orders as 

shown in Figure 5-4 and the number of hidden units must be determined. 

 

Figure 5-3: Order lag space of inputs and outputs 

 The model order is represented the number of regressors comprising 

of past outputs and past inputs of a specific input-output pair in a SISO 
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network. For a MISO network, the model order is effectively the number of 

regressors associated with each individual input-output pair for each 

variable. Hence, for a network with 5 input variables and a single output 

variable, there would be as many regressors as the sum of all the 

regressors for each input-output variable pair.  

 The number of regressors were taken into account for the 5 

independent variables. For e.g., for the input variable TVD, there are 4 past 

inputs, and they are fed into the neural network as regressors. There is 

only one dependent variable, DV, and hence, in the case of TVD, 4 previous 

outputs are fed back fed into the neural network as regressors. If a SISO 

model was implemented with TVD as a single input and SAND as the 

output, then the NNARX network would be the sum of all the regressors of 

the past inputs and past outputs. In this case, the total no. of regressors 

would be the sum of the 4 past inputs of TVD and the 4 past outputs of 

SAND. Hence, the total no. of regressors would be the size of the input 

layer, and with the example given, the size of the input layer would be 8 

neurons, while the size of the size of the output layer would be 1 neuron. 

In this instance, the total number of regressors for the SISO Model using 

the NNARX structure would be 8.  

 Likewise, if two variables were selected instead, a MISO model would 

be implemented, and the total no. of regressors would be the sum of the 

4 past inputs of the first variable, sum of the 4 past inputs of the second 

variable and the sum of the 4 past outputs. In this case, the 4 past outputs 

required for the first variable takes precedence to the 2 past outputs of the 

second variable. In implementing the MISO model using two input variables 

each with 4 different past inputs but with 4 past outputs and 2 past outputs 

respectively, the total number of regressors is twelve instead of ten. 

 Essentially, in the implementation of MISO models, the input variable 

with the maximum no. of past outputs dictates the no. of past outputs to 

be used in the summation of the total no. of regressors. On the other hand, 
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if the input with the minimum no. of past outputs is considered, then the 

input variable which would have required 4 past outputs would be deprived 

from information from the two past outputs (regressors) that have been 

omitted. The drawback would be that the NNARX model would take a 

longer processing time due to 2 additional past output regressors for the 

two variables. However, the benefit that is obtained from not omitting the 

2 required past outputs each for the first variables outweighs the slightly 

longer processing time for the next variables. 

 Consider the case where 5 input variables are used to build a MISO 

model with NNARX structure, to predict the onset of SAND production. The 

schematic of the neural network is depicted with 4 past inputs for variables 

TVD and Qgas, while 3 past inputs for variable Qw, and 2 past inputs for 

variable BHFP while no past input for variable DD. Hence, 13 past inputs 

of the input variables. For the dependent variable, SAND which is to be 

predicted, 4 past outputs were selected to build the model and the NNARX 

structure is shown in Figure 5-4. 
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Figure 5-4: Regressors for a 5-Input Single Output (MISO) 

5.3.2 Training, Validation and Test Data-subsets 

The need to validate the neural network model was required to ascertain 

the confidence level of any model. Validation was carried out by computing 

the cross-correlations and autocorrelations to determine the performance 

index. The dataset is subdivided into the following proportion; Training 

Subset (40%), Validation Subset (40%) and Independent Test Subset 

(20%). The dataset sub-division was illustrated as shown in Figure 5-5. 
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Figure 5-5: Model Validation  with 40-40-20 Ratio 

 The validation set was used together with the training set to prune 

the neural network. Due to the network ending up in a “bad” local 

minimum, it should be trained starting from different initial weights. 

Regularization has a tremendous smoothing effect on the local minimum. 

Nevertheless, local minima remains one of the major problems for 

nonlinear regressions and pruning has to do with obtaining the optimal 

network architecture selection. 

5.3.3 Neural Network Parameters 

The parameters of the neural network in terms of its structure, regression 

vectors, no. of hidden layer, no. of input and output neurons, activation 

function used in the hidden layer and training algorithms are shown in 

Table 5-5 below. The architecture for the neural network was a multilayer 

perceptron (MLP) with four inputs, with an arbitrary determined number of 

hidden neurons in the hidden layer and a single linear neuron in the output 

layer. 

Table 5-5: Network Parameters 

Parameter Description of Parameter 

Model Structure  Nonlinear Auto Regressive with 
Exogenous inputs (NNARX) 

Regression Vector  [na nb nk] 
na = number of past outputs 
nb = number of past inputs 
nk = delay (typically =1) 

Network Architecture Number of Input Layer Neurons = 4 (IV) 

 Number of Hidden Layers = 1 

 Number of Hidden Layer Neurons = 6 

 Number of Output Layer Neurons = 1 
(DV) 

VALIDATIO

N 

TES

T 

40

% 

40

% 

20

% 
TRAININ

G 
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Parameter Description of Parameter 

Activation Functions Hidden Layer: Fast Hyperbolic Tangent 
Function (tanh) 

 Output Layer: Linear Function 

Training Algorithm Levenberg-Marquart Algorithm 

5.3.4 Performance Indices 

The number of hidden neurons in the hidden layer was determined during 

training of the network by measuring the performance indices of the 

training and validation and test subsets. The performance of the network 

is measured by determining the normalised sum of squared error (NSSE). 

• Performance Index of Training Subset: 𝑁𝑆𝑆𝐸𝑇𝑟𝑎𝑖𝑛 

• Performance Index of Validation Subset: 𝑁𝑆𝑆𝐸𝑉𝑎𝑙𝑖𝑑 

• Performance Index of Test Subset: 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡 

 Moreover, in order to prevent overfitting, the trained network was 

further pruned, and the performance indices of the pruned neural network 

was measured accordingly. 

• Pruned Performance Index of Training Subset: 𝑁𝑆𝑆𝐸𝑇𝑟𝑎𝑖𝑛𝑃
 

• Pruned Performance Index of Validation Subset: 𝑁𝑆𝑆𝐸𝑉𝑎𝑙𝑖𝑑𝑃
 

• Pruned Performance Index of Test Subset: 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝑃 

 A total of six performance indices were computed for the dataset and 

was recorded in the Performance Database. Residual analysis of the 

performance indices facilitated and enabled model selection of the neural 

network in terms of the required number of neurons in the hidden layer of 

the neural network and its corresponding learning rate, λ. 

5.4 Residual Analysis 

Residuals are differences between the one-step-predicted output from the 

model and the measured output from the validation data set. Thus, 

residuals represent the portion of the validation data not explained by the 
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model. Residual analysis consists of two tests, namely the whiteness test 

and independence test (Ljung, 1999). The most common method of 

validation is to investigate the residuals (prediction errors) by cross-

validation on a validation subset. The autocorrelation function of the 

residuals and cross-correlation function between controls and residuals 

were used to validate the test set. 

5.4.1 Autocorrelation 

For sampled signal, the autocorrelation is defined as either biased or 

unbiased for 𝑚 =  1, 2, … . . , 𝑁 + 1 for both the unbiased and the biased 

cases (Rodgers and Nicewander, 1988). 

For the Unbiased Autocorrelation: 

𝑅𝑢𝑢(𝑚) =
1

𝑁 − |𝑚|
∑ 𝑢(𝑛)𝑢(𝑛 + 𝑚 − 1)

𝑁−|𝑚|+1

𝑛=1

 (5-7) 

For the Biased Autocorrelation: 

𝑅𝑢𝑢(𝑚) =
1

𝑁
∑ 𝑢(𝑛)𝑢(𝑛 + 𝑚 − 1)

𝑁−|𝑚|+1

𝑛=1

 (5-8) 

According to the whiteness test criteria, a good model has the residual 

autocorrelation function inside the confidence interval of the corresponding 

estimates, indicating that the residuals are uncorrelated (Hipel, McLeod, 

and Lennox, 1977). 

5.4.2 Cross-correlations 

The cross correlation function measures the dependence of the values of 

one signal on another signal (Rodgers and Nicewander, 1988). For sampled 

signals, it is defined as, 

𝑅𝑦𝑢(𝑚) =
1

𝑁
∑ 𝑦(𝑛)𝑢(𝑛 + 𝑚 − 1)

𝑁−|𝑚|+1

𝑛=1

 (5-9) 
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for 𝑚 =  1,2… . . (𝑁 + 1) and where 𝑁 is the number of samples. 

 Cross-correlation is a measure of similarity of two waveforms as a 

function of a time lag applied to one of them, while the auto-correlation is 

the cross-correlation of a signal with itself. According to the independence 

test criteria, a good model has residuals uncorrelated with past inputs. 

Evidence of correlation indicates that the model does not describe how part 

of the output relates to the corresponding input (Haugh, 2010). A peak 

outside the confidence interval for lag k means that the output 𝑦(𝑡) that 

originates from the input 𝑢(𝑡 − 𝑘) is not properly described by the model. 

5.5 Model Estimation 

5.5.1 Validation Before Model Pruning 

The performance index for the training subset before pruning, NSSE_Train 

was recorded for network architecture comprising of an arbitrary value of 

five (5) neurons in the hidden layer, HL. The measure of the performance 

index used was the minimum Normalised Sum of Squared Error 

(NSSE_min). The network was trained and validated using the training and 

validation data-subsets, respectively. The corresponding performance 

index was measured for these subsets and the values for 𝑁𝑆𝑆𝐸_min _𝑇𝑟𝑎𝑖𝑛 

and 𝑁𝑆𝑆𝐸_min _𝑉𝑎𝑙𝑖𝑑 were recorded. 

 The performance of the validation data subset was higher than the 

training data subset. This was due to overtraining as a result of having too 

many weights. After the network has been trained and validated, the test 

data-subset was used to predict SAND and the performance index of the 

test subset, 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡. 

 The performance index of the test data-subset was much lower than 

that of the training data-subset. Residual analysis using the whiteness and 

independence tests were carried out on results of the model estimation. 

Both tests under the residual analysis failed indicating that there were lag 

http://en.wikipedia.org/wiki/Waveforms
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orders which exceeded the 95% confidence limit. However, although the 

𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝑃 error was a minimum, the result was rejected as it did not pass 

both the whiteness and independence tests. Hence, there was a 

requirement for residual analysis to be successful for the result to be 

accepted. In this instance, the minimum value of the normalised sum of 

squared error of the test datasubset, 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝑃, was not a sufficient 

condition for acceptance of the result. This is due to the fact that the model 

had too many redundant weights and it was a case of overfitting, and 

hence, the result was rejected. In order to remove the redundant weight, 

the network was pruned using the OBS strategy.  

 The model was pruned and the corresponding performance indices of 

the training (𝑁𝑆𝑆𝐸𝑇𝑟𝑎𝑖𝑛𝑃
), validation (𝑁𝑆𝑆𝐸𝑉𝑎𝑙𝑖𝑑𝑃

) and test (𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝑃) data-

subsets. 

 The pruning strategy adopted worsened the performance index of the 

training error from a minimum value of 𝐍𝐒𝐒𝐄𝐓𝐫𝐚𝐢𝐧 of 1.42E-12 to a value of 

𝑁𝑆𝑆𝐸𝑇𝑟𝑎𝑖𝑛𝑃
 after pruning to 1.32E-00. The reason for this is that training 

data is trained with a much-reduced number of weights. These weights are 

the weights that have remained after the network has been pruned and 

represents the optimum pruned network. However, there is a significant 

improvement on the validation data-subset as a result of pruning from a 

value of 𝑁𝑆𝑆𝐸𝑉𝑎𝑙𝑖𝑑 of 2.16E-01 to three orders of magnitude better to a 

value of 𝑁𝑆𝑆𝐸𝑉𝑎𝑙𝑖𝑑𝑃
 of 1.1E-01. This improvement in the validation data-

subset is attributed to the absence of redundant weights which have a 

relative lower value. Those weights with lower relative values are removed 

as they contribute less to the network. When tested with an independent 

set of test data-subset, the pruned network exhibited a significant 

improvement 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡 of 8.85E-00 to a value of 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝑃 of 1.35E-00. The 

marked improvement underwent a residual analysis. In both the whiteness 

and independent tests, the auto-correlations cross-correlations respectively 

were stayed within their standard deviations. Since the predictions were 
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not as good as the validation data, these tests indicates that the neural 

network is overfitting the data. 
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Figure 5-6: Normalised Sum of Squared Error Before/After Prunning with 13 
Neurons 

 The final regressor selected for the Neural Network Auto Regressive 

with Exogenous inputs (NNARX) model was [4:4-4-3-2] i.e., with a total of 

17 exogenous inputs (4 past outputs and 13 past inputs). 

5.6 Regression models 

Sand production can be measured with a correlation to all the four process 

variables. In terms of which combinations of process variables or 

components have a stronger influencing contribution to the sand 

production, principal component analysis was conducted. A linear 

regression model using the dataset subsets testing for the fitting of the 5 

predictor variables with the response variable to obtain the principal 

components. The minimization of the expected error in predicting the 

response from future observations on the predictor variables selected the 
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number of principal components. A large number of components will fit the 

current observed data but will cause overfitting. Therefore, the model will 

give an optimistic estimate of the expected error with a poor generalization 

for new prediction.  

5.6.1 Hidden Layer Neurons 

There are many rule-of-thumb methods as shown in Table 5-6 for 

determining the correct number of neurons to use in the hidden layers. 

Table 5-6: Rules of Thumb for No. of Hidden Layers 

Claims Description of Claim Symbolic 

1 

The number of hidden neurons, NHL 
should be between the size of the input 
layer, SI and the size of the output layer, 
SO. 

SO < NHL < SI 

2 

The number of hidden neurons, NHL 
should be 2/3 of the size of the input 
layer, SI plus the size of the output 
layer, SO. 

NHL = 2/3 * SI + SO 

3 

The number of hidden neurons, NHL 
should be less than twice the size of the 
input layer, SI. 

NHL < 2 * SI 

The above rules of thumb were taken into account when designing the 

neural network based on the generalisation of test error. Based on rules of 

thumb for choosing the no. of hidden layers, the total number of neurons 

in the input layer depends on the model order of the corresponding input 

variables. 

5.6.2 Plots of Residual Analysis 

Figure 5-7 shows an analysis of the network response was performed by 

feeding the entire data set through the network (training and test) 

employing the autocorrelation of the prediction error. 
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Figure 5-7: Autocorrelations and cross-correlations after pruning based on 4 
input variables 

5.6.3 Initial Learning Rate, 𝑵𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝑰𝑳𝑹
 

The initial learning rate is varied between 0.1 and 0.9 and the performance 

index of the Test subset is recorded as 𝑁𝑆𝑆𝐸𝑇𝑒𝑠𝑡𝐼𝐿𝑅
 and shown in Figure 

5-8. 
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Figure 5-8: Improved performance at low initial learning rate of 0.2 

5.7 Summary 

Model training and validation constitute an important aspect of modelling 

to ensure that the problem of overfitting is minimised. Cross-validation is 

a statistically sound method for choosing the number of components in 

PLSR or PCR. With PCR, linear regression can be carried out with the output 

vector or the dependent variable. A comparison is made with partial least 

squares to choose the optimum number of components using the k-fold 

cross-validation to compute the mean square prediction error. The model 

was validated with an independent test set. In order to increase the 

robustness of the model, round robin tests using random slices of the 

dataset that were circularly shifted. The model variation amongst the three 

different subsets was tested to recreate different ratios for model training 

and validation. 

 Information on datasets can be made available in order to realise 

artificial neural network systems as shown in Figure 5-9. In the absence of 
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reliable equipment to monitor the onset of sand production, data driven 

models will become the preferred technique in addressing the high degree 

of uncertainty.  

TEST - 20%TRAINING - 40% VALIDATION - 40%

VALIDATETRAIN

TRAIN
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PREDICT
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Figure 5-9: ANN-based Sand Prediction System 

 



 

130 

 

CHAPTER 6 
 

CONCLUSION AND RECOMMENDATION 
 

6.1 Conclusion 

The presence of prolonged sand production has detrimental effects to the 

continuous and safe production of oil and gas. The prediction of the onset 

of sand production allows mitigative measures to be taken by production 

operators in order prevent the erosive and corrosive damage to equipment. 

Although sand monitoring devices are common in the oil and gas industry 

to assess the undesirable effects of sand production, the cost associated 

with the installation, operation, maintenance and replacement of a sand 

monitoring system is expensive. Besides, there are the indirect cost 

incurred with the mobilisation of personnel and logistics to carry out these 

activities. More importantly, the increasing exposure of people to health, 

safety and environmental hazards when they are involved in activities 

connected with a sand monitoring system. 

6.2 Recommendation 

An area that can be explored would be the use of long short-term memory 

of LSTM’s when there is larger datasets available with the application of 

deep learning networks. 

 Real time production data and process engineering data from oil and 

gas wells could be implemented with the present algorithm for the  early 

detection of the onset of sand production, and possibly its commercial 

viability. 
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